版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.今年月日至月日,我市某学校组织八年级学生走进相距约的“济源市示范性综合实践基地”,开展“拓展、体验、成长”综合实践活动.出发时,一部分服务人员乘坐小轿车,八年级师生乘坐旅游大巴同时从学校出发,当小轿车到达目的地时,旅游大巴行走.已知旅游大巴比小轿车每小时少走,请分别求出旅游大巴和小轿车的速度.解:设旅游大巴的速度是,根据题意,下面列出的方程正确的是()A. B. C. D.2.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走千米,根据题意可列方程为()A. B.C. D.3.一次函数的图象与轴的交点坐标是()A. B. C. D.4.已知,A与对应,B与对应,,则的度数为()A. B. C. D.5.如果点在第四象限,那么m的取值范围是().A. B. C. D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A. B.C. D.7.下列各命题的逆命题是真命题的是A.对顶角相等 B.全等三角形的对应角相等C.相等的角是同位角 D.等边三角形的三个内角都相等8.小明和小亮同时从学校出发到新华书店去买书,学校和书店相距7500米,小明骑自行车的速度是小亮步行速度的1.2倍,小明比小亮早15分钟到书店,设小亮速度是千米/小时,根椐题意可列方程是()A. B. C. D.9.如图,在Rt△ABC中,∠ACB=90°,D是AB中点,AB=10,则CD的长为()A.5 B.6 C.8 D.1010.已知直线,若,则此直线的大致图像可能是()A. B. C. D.11.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样一个问题:“今天有开门去阔一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD和BC),门边缘D,C两点到门槛AB的距离是1尺,两扇门的间隙CD为2寸,则门宽AB长是()寸(1尺=10寸)A.101 B.100 C.52 D.9612.下列图形中,是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上的点处,若的面积为,那么折叠的的面积为__________.14.计算:=__________.15.在直角坐标系内,已知A,B两点的坐标分别为A(-1,1),B(2,3),若M为x轴上的一点,且MA+MB最小,则M的坐标是________.16.如图,在扇形BCD中,∠BCD=150°,以点B为圆心,BC长为半径画弧交BD于点A,连接AC,若BC=8,则图中阴影部分的面积为________17.直线与轴的交点坐标是(,),则直线与坐标轴围成的三角形面积是_______.18.若3a2﹣a﹣2=0,则5+2a﹣6a2=_____.三、解答题(共78分)19.(8分)若正数、、满足不等式组,试确定、、的大小关系.20.(8分)如图,图中有多少个三角形?21.(8分)如图1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.请解答下列问题:(1)图中与∠DBE相等的角有:;(2)直接写出BE和CD的数量关系;(3)若△ABC的形状、大小不变,直角三角形BEC变为图2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE与AB相交于点F.试探究线段BE与FD的数量关系,并证明你的结论.22.(10分)金堂县在创建国家卫生城市的过程中,经调查发现居民用水量居高不下,为了鼓励居民节约用水,拟实行新的收费标准.若每月用水量不超过12吨,则每吨按政府补贴优惠价元收费;若每月用水量超过12吨,则超过部分每吨按市场指导价元收费.毛毛家家10月份用水22吨,交水费59元;11月份用水17吨,交水费1.5元.(1)求每吨水的政府补贴优惠价和市场指导价分别是多少元?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式;(3)小明家12月份用水25吨,则他家应交水费多少元?23.(10分)某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费125元.品名商店笔记本(元/件)水笔(元/件)友谊超市52网店4(1)班级购买的笔记本和水笔各多少件?(2)求从网店购买这些奖品可节省多少元?24.(10分)在矩形ABCD中,,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.(1)如图1,当DH=DA时,①填空:∠HGA=度;②若EF∥HG,求∠AHE的度数,并求此时a的最小值;(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.25.(12分)如图,在平面直角坐标系中,直线与轴,轴分别交于,两点,点为直线上一点,直线过点.(1)求和的值;(2)直线与轴交于点,动点在射线上从点开始以每秒1个单位的速度运动.设点的运动时间为秒;①若的面积为,请求出与之间的函数关系式,并写出自变量的取值范围;②是否存在的值,使得?若存在,请求出的值;若不存在,请说明理由.26.车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
参考答案一、选择题(每题4分,共48分)1、A【分析】由题意根据所设未知数找出等量关系建立分式方程,即可判断选项.【详解】解:由题意可知利用时间等于路程除以速度和时间等量关系建立方程为:.故选:A.【点睛】本题考查分式方程的实际应用,利用时间等于路程除以速度建立等量关系是解题的关键.2、B【分析】关键描述语为:“乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟”;等量关系为:乘公交车所用时间=乘坐私家车所用时间+.【详解】解:设乘公交车平均每小时走x千米,根据题意可列方程为:.故选:B.【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解题关键.3、C【分析】一次函数y=2x+2的图象与x轴的交点的纵坐标是0,所以将y=0代入已知函数解析式,即可求得该交点的横坐标.【详解】令2x+2=0,解得,x=−1,则一次函数y=2x+2的图象与x轴的交点坐标是(−1,0);故选:C.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(−,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4、D【分析】根据全等三角形的对应角相等,得到,然后利用三角形内角和定理,即可求出.【详解】解:∵,∴,∵,,∴;故选择:D.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,解题的关键是掌握全等三角形的对应角相等,以及熟练运用三角形内角和定理解题.5、D【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p(m,1-2m)在第四象限,∴m>0,1-2m<0,解得:m>,故选D.【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.6、C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.7、D【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【详解】A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;
D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.故选D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.8、D【分析】由题意设小亮速度是千米/小时,根椐题意小明比小亮早15分钟到书店列出方程即可.【详解】解:由小明比小亮早15分钟到书店可得小亮的行程时间减去小明的行程时间等于小时,所以列出方程为.故选:D.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是根据题干数量关系列出分式方程.9、A【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】∵∠ACB=90°,D是AB中点,∴CD=AB=5,故选:A.【点睛】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10、B【分析】根据一次函数解析式系数k,b的几何意义,逐一判断选项,即可.【详解】图A中,k>0,b>0,kb>0,不符合题意,图B中,k>0,b<0,kb<0,符合题意,图C中,k<0,b<0,kb>0,不符合题意,图D中,k<0,b=0,kb=0,不符合题意,故选B.【点睛】本题主要考查一次函数的系数k,b的几何意义,掌握k,b的正负性与一次函数图象的位置关系是解题的关键.11、A【分析】根据勾股定理列方程求出AO,即可得到结论.【详解】解:设单门的宽度AO是x尺,根据勾股定理,得x2=1+(x-0.1)2,解得x=5.05,故AB=2AO=10.1尺=101寸,故答案为:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.12、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、是轴对称图形,故本选项符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每题4分,共24分)13、【分析】由三角形面积公式可求BF的长,从而根据勾股定理可求AF的长,根据线段的和差可求CF的长,在Rt△CEF中,根据勾股定理可求DE的长,即可求△ADE的面积.【详解】解:∵四边形ABCD是矩形,
∴AB=CD=6cm,BC=AD,,∴BF=8cm,在Rt△ABF中,,根据折叠的性质,AD=AF=10cm,DE=EF,∴BC=10cm,
∴FC=BC-BF=2cm,在Rt△EFC中,EF2=EC2+CF2,
∴DE2=(6-DE)2+4,,,故答案为:.【点睛】本题考查折叠的性质,矩形的性质,勾股定理.理解折叠前后对应线段相等是解决此题的关键.14、【分析】先把除法转化为乘法,然后约分化简.【详解】解:原式==.故答案为:.【点睛】本题考查了分式的除法,分式的除法通常转化为分式的乘法来计算,分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘,可简单理解为:除以一个数(或式)等于乘以这个数(或式)的倒数.15、(,0)【分析】取点A关于x轴的对称点A′(-1,-1),连接A′B,已知两点坐标,可用待定系数法求出直线A′B的解析式,从而确定出占M的坐标.【详解】解:取点A关于x轴的对称点A′(-1,-1),连接A′B,与x轴交点即为MA+MB最小时点M的位置,
∵A′(-1,-1),B(2,3),
设直线A'B的解析式为y=kx+b,则有:,解得:,∴直线A′B的解析式为:,当y=0时,x=,即M(,0).故答案为:(,0).【点睛】利用轴对称找线段和的最小值,如果所求的点在x轴上,就取x轴的对称点,如果所求的点在y轴上,就取y轴的对称点,求直线解析式,确定直线与坐标轴的交点,即为所求.16、【分析】连接AB,判断出是等边三角形,然后根据扇形及三角形的面积公式,即可求得阴影部分的面积为:.【详解】解:连接,∵,∴是等边三角形,∴S,,∴.故答案为:.【点睛】本题考察扇形中不规则图形面积的求解,掌握扇形的面积公式是解题的关键.17、1【分析】根据直线与y轴交点坐标可求出b值,再求出与x轴交点坐标,从而计算三角形面积.【详解】解:∵与y轴交于(0,2),将(0,2)代入,得:b=2,∴直线表达式为:y=2x+2,令y=0,则x=-1,∴直线与x轴交点为(-1,0),令A(0,2),B(-1,0),∴△ABO的面积=×2×1=1,故答案为:1.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.18、1【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【详解】解:∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点睛】本题考查了整体代入法求代数式的值,以及添括号法则.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.三、解答题(共78分)19、【分析】根据不等式的基本性质将三个不等式都变为a+b+c的取值范围,从而得出a、c的大小关系和b、c的大小关系,从而得出结论.【详解】解:①得,④②得,⑤③得,⑥由④,⑤得,所以同理,由④,⑥得,所以,,的大小关系为.【点睛】此题考查的是解不等式,掌握不等式的基本性质是解题关键.20、13【解析】试题解析:有1个三角形构成的有9个;有4个三角形构成的有3个;最大的三角形有1个;所以,三角形个数为9+3+1=13.故答案为13.21、(1)∠ACE和∠BCD;(2)BE=CD;(3)BE=DF,证明见解析【分析】(1)根据三角形内角和定理得到∠DBE=∠ACE,根据角平分线的定义得到∠BCD=∠ACE,得到答案;(2)延长BE交CA延长线于F,证明△CEF≌△CEB,得到FE=BE,证明△ACD≌△ABF,得到CD=BF,证明结论;(3)过点D作DG∥CA,交BE的延长线于点G,与AE相交于H,分别证明△BGH≌△DFH、△BDE≌△GDE,根据全等三角形的性质解答即可.【详解】解:(1)∵BE⊥CD,∴∠E=90°,∴∠E=∠BAC,又∠EDB=∠ADC,∴∠DBE=∠ACE,∵CD平分∠ACB,∴∠BCD=∠ACE,∴∠DBE=∠BCD,故答案为:∠ACE和∠BCD;(2)延长BE交CA延长线于F,∵CD平分∠ACB,∴∠FCE=∠BCE,在△CEF和△CEB中,,∴△CEF≌△CEB(ASA),∴FE=BE,在△ACD和△ABF中,,∴△ACD≌△ABF(ASA),∴CD=BF,∴BE=CD;(3)BE=DF证明:过点D作DG∥CA,交BE的延长线于点G,与AE相交于H,∵DG∥AC,∴∠GDB=∠C,∠BHD=∠A=90°,∵∠EDB=∠C,∴∠EDB=∠EDG=∠C,∵BE⊥ED,∴∠BED=90°,∴∠BED=∠BHD,∵∠EFB=∠HFD,∴∠EBF=∠HDF,∵AB=AC,∠BAC=90°,∴∠C=∠ABC=45°,∵GD∥AC,∴∠GDB=∠C=45°,∴∠GDB=∠ABC=45°,∴BH=DH,在△BGH和△DFH中,,∴△BGH≌△DFH(ASA)∴BG=DF,∵在△BDE和△GDE中,,∴△BDE≌△GDE(ASA)∴BE=EG,∴BE=.【点睛】本题考查了三角形内角和定理,角平分线的意义,三角形全等的判定和性质等相关知识,解决本题的关键是:①熟练掌握三角形内角和定理,理清角与角之间存在的关系;②正确理解角平分线的性质③熟练掌握三角形全等的判定方法。22、(1)每吨水的政府补贴优惠价和市场指导价分别是2元、3.5元;(2);(3)69.5【分析】(1)根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小明家的用水量判断其在哪个范围内,代入相应的函数关系式求值即可.【详解】解:(1)由题可得,解得:,∴每吨水的政府补贴优惠价和市场指导价分别是2元、3.5元;(2)①当时,,②当时,,综上:;(3)∵,∴答:他家应交水费69.5元.【点睛】本题考查了二元一次方程组的应用及一次函数的应用,明确题意正确找出数量关系是解题关键,同时在求一次函数表达式时,此函数是一个分段函数,注意自变量的取值范围.23、(1)笔记本15件,水笔25件;(2)20元.【分析】(1)可设购买笔记本x件,购买水笔y件,根据题意建立方程组即可;(2)依据题意分别求出笔记本和水笔单个零售价的优惠价格再进行相加即可求得.【详解】(1)设购买笔记本x件,购买水笔y件,依题意有,解得,答:购买笔记本15件,水笔25件.(2)15×(5-4)+25×(2-1.8)=20.答:从网店购买这些奖品可节省20元.【点睛】此题考查二元一次方程组的应用,解题关键是找准等量关系并列出二元一次方程组进行求解.24、(1)①45;②当∠AHE为锐角时,∠AHE=11.5°时,a的最小值是2;当∠AHE为钝角时,∠AHE=111.5°时,a的最小值是;(1).【详解】(1)①∵四边形ABCD是矩形,∴∠ADH=90°.∵DH=DA,∴∠DAH=∠DHA=45°.∴∠HAE=45°.∵HA=HG,∴∠HAE=∠HGA=45°②分两种情况讨论:第一种情况:如答图1,∠AHE为锐角时,∵∠HAG=∠HGA=45°,∴∠AHG=90°.由折叠可知:∠HAE=∠F=45°,∠AHE=∠FHE,∵EF∥HG,∴∠FHG=∠F=45°.∴∠AHF=∠AHG∠FHG=45°,即∠AHE+∠FHE=45°.∴∠AHE=11.5°.此时,当B与G重合时,a的值最小,最小值是1.第二种情况:如答图1,∠AHE为钝角时,∵EF∥HG,∴∠HGA=∠FEA=45°,即∠AEH+∠FEH=45°.由折叠可知:∠AEH=∠FEH,∴∠AEH=∠FEH=11.5°.∵EF∥HG,∴∠GHE=∠FEH=11.5°.∴∠AHE=90°+11.5°=111.5°.此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在Rt△AHG中,∠AHG=90°,由勾股定理得:AG=AH=1x,∵∠AEH=∠FEH,∠GHE=∠FEH,∴∠AEH=∠GHE.∴GH=GE=x.∴AB=AE=1x+x.∴a的最小值是.综上所述,当∠AHE为锐角时,∠AHE=11.5°时,a的最小值是1;当∠AHE为钝角时,∠AHE=111.5°时,a的最小值是.(1)如答图3:过点H作HQ⊥AB于Q,则∠AQH=∠GQH=90°,在矩形ABCD中,∠D=∠DAQ=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合同管理前沿:7款软件引领行业高效发展
- 环保项目承包制政策实施方案
- 超导电器配件
- 课程设计构成素材
- 储罐系统检验脚手架搭建方案
- 高端餐厅食材采购与配送方案
- 2024至2030年中国金属球顶垃圾桶行业投资前景及策略咨询研究报告
- 高一新学期学习计划汇编十篇
- 2021-2022学年XX小学课后服务提升方案
- 2024至2030年中国永磁减速起动机数据监测研究报告
- 《干粉灭火器检查卡》
- 校园监控值班记录表(共2页)
- 试桩施工方案 (完整版)
- 走中国工业化道路的思想及成就
- ESTIC-AU40使用说明书(中文100版)(共138页)
- 河北省2012土建定额说明及计算规则(含定额总说明)解读
- Prolog语言(耐心看完-你就入门了)
- 保霸线外加电流深井阳极地床阴极保护工程施工方案
- 蓝色商务大气感恩同行集团公司20周年庆典PPT模板
- 恒温箱PLC控制系统毕业设计
- 雍琦版 《法律逻辑学》课后习题答案
评论
0/150
提交评论