版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x块板材做桌子,用y块板材做椅子,则下列方程组正确的是()A. B. C. D.2.如图所示,在折纸活动中,小明制作了一张纸片,点、分别是边、上,将沿着折叠压平,与重合,若,则().A.140 B.130 C.110 D.703.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2 B.1 C.0 D.-14.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分 B.中位数 C.方差 D.平均数5.把分式中的x、y的值都扩大到原来的2倍,则分式的值…()A.不变 B.扩大到原来的2倍C.扩大到原来的4倍 D.缩小到原来的6.如图,在等边中,,将线段沿翻折,得到线段,连结交于点,连结、以下说法:①,②,③,④中,正确的有()A.个 B.个 C.个 D.个7.实数、、、在数轴上的位置如图所示,下列关系式不正确的是()A. B. C. D.8.估计的运算结果应在哪个两个连续自然数之间()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣49.如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分别找一点E、F,使△DEF的周长最小.此时,∠EDF=()A.α B. C. D.180°-2α10.如图,已知A,D,B,E在同一条直线上,且AD=BE,AC=DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF的是()A.BC=EF B.AC//DF C.∠C=∠F D.∠BAC=∠EDF11.已知点都在函数的图象上,下列对于的关系判断正确的是()A. B. C. D.12.若分式的值为0,则x的值为()A.0 B.1 C.﹣1 D.±1二、填空题(每题4分,共24分)13.如图,中,一内角和一外角的平分线交于点连结,_______________________.
14.已知(x+y+2)20,则的值是____.15.如图,在中,垂直平分交于点,若,,则_________________.16.已知空气的密度是0.001239,用科学记数法表示为________17.如图,在一个长为8cm,宽为5cm的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为2cm的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是_____.18.将一副三角板按如图所示摆放,使点A在DE上,BC∥DE,其中∠B=45°,∠D=60°,则∠AFC的度数是_____.三、解答题(共78分)19.(8分)小丽和爸爸进行1200米竞走比赛,爸爸的速度是小丽的1.5倍,小丽走完全程比爸爸多用5分钟,小丽和爸爸每分钟各走多少米?20.(8分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)已知△ABC,顶点A、B、C都在正方形方格交点上,正方形方格的边长为1.(1)写出A、B、C的坐标;(2)请在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(3)在y轴上找到一点D,使得CD+BD的值最小,(在图中标出D点位置即可,保留作图痕迹)22.(10分)感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:(1)如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:(2)在图2中,AD平分∠BAC,如果∠B=60°,∠C=120°,DB=2,AC=3,则AB=.23.(10分)如图,等边的边长为,点、分别是边、上的动点,点、分别从顶点、同时出发,且它们的速度都为.(1)如图1,连接,求经过多少秒后,是直角三角形;(2)如图2,连接、交于点,在点、运动的过程中,的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.(3)如图3,若点、运动到终点后继续在射线、上运动,直线、交于点,则的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.24.(10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?25.(12分)某旅行团去景点游览,共有成人和儿童20人,且旅行团中儿童人数多于成人.景点规定:成人票40元/张,儿童票20元/张.(1)若20人买门票共花费560元,求成人和儿童各多少人?(2)景区推出“庆元旦”优惠方案,具体方案为:方案一:购买一张成人票免一张儿童票费用;方案二:成人票和儿童票都打八折优惠;设:旅行团中有成人a人,旅行团的门票总费用为W元.①方案一:_____________________;方案二:____________________;②试分析:随着a的变化,哪种方案更优惠?26.解分式方程:1.
参考答案一、选择题(每题4分,共48分)1、D【分析】设用x块板材做桌子,用y块板材做椅子,根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.【详解】设用x块板材做桌子,用y块板材做椅子,∵用100块这种板材生产一批桌椅,∴x+y=120①,生产了x张桌子,4y把椅子,∵使得恰好配套,1张桌子4把椅子,∴2x=4y②,①和②联立得:,故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.2、A【分析】利用∠1所在平角∠AEC上与∠2所在平角∠ADB上出发,利用两个平角的和减去多余的角,就能得到∠1+∠2的和,多余的角需要可以看作2∠AED+2∠ADE,因为∠A=70°所以∠AED+∠ADE=180°-70°=110°,所以∠1+∠2=360°-2(∠AED+∠ADE)=360°-220°=140°【详解】∠AED+∠ADE=180°-70°=110°,∠1+∠2=∠AEC+∠ADB-2∠AED-2∠ADE=360°-2(∠AED+∠ADE)=360°-220°=140°【点睛】本题主要考查角度之间的转化,将需要求的角与已知联系起来3、D【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【详解】2x>m−3,解得x>,∵在数轴上的不等式的解集为:x>−2,∴=−2,解得m=−1;故选:D.【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.4、B【解析】试题分析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.考点:统计量的选择.5、A【解析】把分式中的x、y的值都扩大到原来的2倍,可得,由此可得分式的值不变,故选A.6、D【分析】由△ABD≌△ACE,△ACE≌△ACM,△ABC是等边三角形可以对①②进行判断,由AC垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形可对④进行判断.【详解】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACB=60°,∵BD=CE,∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE∵线段沿翻折,∴AE=AM,∠CAE=∠CAM,∴,故①正确,∴△ACE≌△ACM(SAS)∴∠ACE=∠ACM=60°,故②正确,由轴对称的性质可知,AC垂直平分EM,∴∠CNE=∠CNM=90°,∵∠ACM=60°,∴∠CMN=30°,∴在Rt△CMN中,,即,故③正确,∵∠BAD=∠CAE,∠CAE=∠CAM,∴∠BAD=∠CAM,∵∠∠BAD+∠CAD=60°,∴∠CAM+∠CAD=60°,即∠DAM=60°,又AD=AM∴△ADM为等边三角形,∴故④正确,所以正确的有4个,故答案为:D.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质、线段垂直平分线的判定和性质、轴对称的性质等知识,解题的关键是灵活运用上述几何知识进行推理论证.7、D【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值解题即可.【详解】如下图:A.∵OA>OB,∴|a|>|b|,故A正确;B.,故B正确;C..|a-c|=|a+(-c)|=-a+c=c-a,故C正确;D.|d-1|=OD-OE=DE,|c-a|=|c+(-a)|=OC+OA,故D不正确.故答案为:D.【点睛】本题考查了实数与数轴,正确理解绝对值的意义是解题的关键.8、C【解析】根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.9、D【分析】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.根据四边形内角和等于360°,可得∠ADC的度数,进而可得∠P+∠Q的度数,由对称性可得∠EDP+∠FDQ的度数,进而即可求解.【详解】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°-α,∴∠P+∠Q=180°-∠ADC=α,由对称性可知:EP=ED,FQ=FD,∴∠P=∠EDP,∠Q=∠FDQ,∴∠EDP+∠FDQ=∠P+∠Q=α,∴故选D.【点睛】本题主要考查轴对称的性质和应用,四边形的内角和定理以及三角形的内角和定理,掌握掌握轴对称图形的性质是解题的关键.10、C【分析】根据全等三角形的判定方法逐项判断即可.【详解】∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且AC=DF,∴当BC=EF时,满足SSS,可以判定△ABC≌△DEF;当AC//DF时,∠A=∠EDF,满足SAS,可以判定△ABC≌△DEF;当∠C=∠F时,为SSA,不能判定△ABC≌△DEF;当∠BAC=∠EDF时,满足SAS,可以判定△ABC≌△DEF,故选C.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11、A【分析】根据题意将A,B两点代入一次函数解析式化简得到的关系式即可得解.【详解】将点代入得:,解得:,则,解得:,故选:A.【点睛】本题主要考查了一次函数图像上点坐标的求解及整式的化简,熟练掌握一次函数点的求法及整式的计算法则是解决本题的关键.12、B【解析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式的值为零,∴,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.二、填空题(每题4分,共24分)13、1°【分析】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,由BD平分∠ABC,可得∠ABD=∠CBD,DH=DF,同理CD平分∠ACE,∠ACD=∠DCF=,DG=DF,由∠ACE是△ABC的外角,可得2∠DCE=∠BAC+2∠DBC①,由∠DCE是△DBC的外角,可得∠DCE=∠CDB+∠DBC②,两者结合,得∠BAC=2∠CDB,则∠HAC=180º-∠BAC,在证AD平分∠HAC,即可求出∠CAD.【详解】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC,DH=DF,∵CD平分∠ACE,∴∠ACD=∠DCF=∠ACE,DG=DF,∵∠ACE是△ABC的外角,∴∠ACE=∠BAC+∠ABC,∴2∠DCE=∠BAC+2∠DBC①,∵∠DCE是△DBC的外角,∴∠DCE=∠CDB+∠DBC②,由①②得,∠BAC=2∠CDB=2×24º=48º,∴∠HAC=180º-∠BAC=180º-48º=132º,∵DH=DF,DG=DF,∴DH=DG,∵DG⊥AC,DH⊥BA,AD平分∠HAC,∠CAD=∠HAD=∠HAC=×132º=1º.故答案为:1.【点睛】本题考查角的求法,关键是掌握点D为两角平分线交点,可知AD为角平分线,利用好外角与内角的关系,找到∠BAC=2∠CDB是解题关键.14、.【分析】利用平方和算术平方根的意义确定(x+y+2)2⩾0,,从而确定x+y+2=0且x−y−4=0,建立二元一次方程组求出x和y的值,再代入求值即可.【详解】解:∵(x+y+2)2≥0,0,且(x+y+2)20,∴(x+y+2)2=0,0,即解得:则.故答案为:.【点睛】本题重点考查偶次方和算术平方根的非负性,是一种典型的“0+0=0”的模式题型,需重点掌握;另外此题结合了二元一次方程组的运算,需熟练掌握“加减消元法”和“代入消元法”这两个基本的运算方法.15、【分析】由勾股定理得到的长度,利用等面积法求,结合已知条件得到答案.【详解】解:垂直平分,故答案为:.【点睛】本题考查的是勾股定理的应用,等面积法的应用,掌握以上知识是解题的关键.16、1.239×10-3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.001239=1.239×10-3故答案为:1.239×10-3.【点睛】本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.17、13cm.【分析】解答此题要将木块展开,然后根据两点之间线段最短解答.【详解】由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为8+2×2=12cm;宽为5cm.于是最短路径为:=13cm.故答案为13cm.【点睛】本题考查了四边形中点到点的距离问题,掌握勾股定理是解题的关键.18、75°【分析】利用平行线的性质以及三角形的外角的性质求解即可.【详解】解:∵BC∥DE,∴∠FCB=∠E=30°,∵∠AFC=∠B+∠FCB,∠B=45°,∴∠AFC=45°+30°=75°,故答案为75°.【点睛】本题考查三角形内角和定理,三角形的外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共78分)19、小丽每分钟走80米,爸爸每分钟走120米【分析】根据题意设小丽每分钟走米,则爸爸每分钟走米,列出方程,解方程并检验,得到答案.【详解】解:设小丽每分钟走米,则爸爸每分钟走米经检验,是原方程的根,并符合题意米答:小丽每分钟走80米,爸爸每分钟走120米.【点睛】本题考查的是分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.20、,用数轴表示见解析.【分析】分别解两个不等式得到和,再根据大小小大中间找确定不等式组的解集,然后利用数轴表示其解集.【详解】解①得,解②得,所以不等式组的解集为.用数轴表示为:【点睛】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.21、(1)A(﹣4,1)B(﹣1,﹣1)C(﹣3,2);(2)见解析;(3)见解析【分析】(1)根据A,B,C的位置写出坐标即可.(2)根据关于x轴对称的点的坐标特征,分别作出A,B,C的对应点A1,B1,C1即可.(3)作点C关于y轴的对称点C′,连接BC′交y轴于D,点D即为所求.【详解】解:(1)由题意:A(﹣4,1)B(﹣1,﹣1)C(﹣3,2)(2)如图,分别确定A、B、C关于x轴对称的对应点A1、B1、C1的坐标A1(-4,-1),B1(-1,1),C1(-3,-2),依次连接,即为所求.(3)如图,作点C关于y轴的对称点C′,连接BC′交y轴于D,点D即为所求.【点睛】本题考查了平面直角坐标系中点的坐标的确定,关于x轴对称的点的坐标特征,最短路径问题,解决本题的关键是熟练掌握关于x轴对称的点的坐标特征。22、(1)证明见解析;(2)1【分析】探究(1):作DE⊥AB交AB与点E,DF⊥AC交AC延长线与点F,欲证明DB=DC,只要证明△DFC≌△DEB即可.
应用(2):由直角三角形的性质可求BE=1,由“AAS”可证△ADF≌△ADE,可得AF=AE,即可求解.【详解】(1)证明:如图,作DE⊥AB交AB与点E,DF⊥AC交AC延长线与点F∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DF=DE∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠FCD=∠B,∵DE⊥AB,DF⊥AC∴∠DFC=∠DEB=90°在△DFC和△DEB中,∴△DFC≌△DEB∴DC=DB(2)∵DB=2,∠B=60°,DE⊥AB,
∴∠BDE=30°
∴BE=1,
∵△DFC≌△DEB,
∴CF=BE,
∵∠FAD=∠EAD,AD=AD,∠F=∠AED=90°,
∴△ADF≌△ADE(AAS)
∴AF=AE,
∴AB=AE+EB=AF+BE=AC+CF+BE=3+2BE=1,
故答案为:1.【点睛】本题是三角形综合题,考查全等三角形的判定和性质,角平分线的性质,直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.23、(1)经过秒或秒后,△PCQ是直角三角形;(2)的大小不变,是定值60°;(3)的大小不变,是定值120°.【分析】(1)分∠PQC=90°和∠QPC=90°两种情形求解即可解决问题;
(2)证得△ABP≌△BCQ(SAS),推出∠BAP=∠CBQ,得(定值)即可;(3)证得△ACP≌△BAQ(SAS),推出,得即可.【详解】解:(1)设经过t秒后,△PCQ是直角三角形.
由题意:,,∵是等边三角形,∴,当∠PQC=90°时,∠QPC=30°,
∴PC=2CQ,
∴,
解得.
当∠QPC=90°时,∠PQC=30°,
∴CQ=2PC,
∴,
解得,综上:经过秒或秒后,△PCQ是直角三角形.(2)结论:∠AMQ的大小不变.
∵△ABC是等边三角形,
∴AB=BC,,
∵点P,Q的速度相等,
∴BP=CQ,在△ABP和△BCQ中∴△ABP≌△BCQ(SAS)∴∴(定值)∴的大小不变,是定值60°.(3)结论:∠AMQ的大小不变.∵△ABC是等边三角形,
∴AB=BC,,∴,
∵点P,Q的速度相等,
∴,在△ACP和△BAQ中∴△ACP≌△BAQ(SAS)∴∴(定值)∴的大小不变,是定值120°.【点睛】本题考查的是等边三角形的性质、直角三角形的性质、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题.24、(1)平均数:260件;中位数:240件;众数:240件(2)不合理,定额为240较为合理【解析】分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农业科技园区运营管理合同标准3篇
- 二零二五年度林权登记与不动产登记网络安全保障合同
- 2025年度智能控制喷锚工程劳务施工合同标准
- 二零二五年度美术教育研发中心美术教师聘用合同4篇
- 2025年度民间担保人文化创意产业贷款合同模板
- 二零二五年度数字经济派遣合同就业协议书范本
- 2025年新能源汽车零部件采购及供应合同范本2篇
- 2025年度山西旅游行业劳动合同书范本3篇
- 2025版智能门卫服务与社区治安巡逻合同3篇
- 2025装载机驾驶员聘用合同-装载机驾驶员职业技能鉴定协议3篇
- 《openEuler操作系统》考试复习题库(含答案)
- 《天润乳业营运能力及风险管理问题及完善对策(7900字论文)》
- 医院医学伦理委员会章程
- xx单位政务云商用密码应用方案V2.0
- 2024-2025学年人教版生物八年级上册期末综合测试卷
- 2025年九省联考新高考 语文试卷(含答案解析)
- 死亡病例讨论总结分析
- 第二章 会展的产生与发展
- 空域规划与管理V2.0
- JGT266-2011 泡沫混凝土标准规范
- 商户用电申请表
评论
0/150
提交评论