2022-2023学年江西省南康区数学八上期末学业水平测试模拟试题含解析_第1页
2022-2023学年江西省南康区数学八上期末学业水平测试模拟试题含解析_第2页
2022-2023学年江西省南康区数学八上期末学业水平测试模拟试题含解析_第3页
2022-2023学年江西省南康区数学八上期末学业水平测试模拟试题含解析_第4页
2022-2023学年江西省南康区数学八上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,两车从南北方向的路段的端出发,分别向东、向西行进相同的距离到达两地,若与的距离为千米,则与的距离为()A.千米 B.千米 C.千米 D.无法确定2.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲 B.乙 C.丙 D.丁3.如图,ΔABC≌ΔADE,AB=AD,AC=AE,∠B=28º,∠E=95º,∠EAB=20º,则∠BAD为()A.77º B.57º C.55º D.75º4.下列运算结果正确的是()A. B.C. D.5.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.6 C.87.8 D.886.下列从左到右的变形中,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣5x+6=(x﹣2)(x﹣3)C.m2﹣2m﹣3=m(m﹣2)﹣3 D.m(a+b+c)=ma+mb+mc7.估计+1的值()A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间8.一个三角形的三边长度的比例关系是,则这个三角形是()A.顶点是30°的等腰三角形 B.等边三角形C.有一个锐角为45°的直角三角形 D.有一个锐角为30°的直角三角形9.如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F10.下列多项式中,能分解因式的是()A.m2+n2 B.-m2-n2 C.m2-4m+4 D.m2+mn+n2二、填空题(每小题3分,共24分)11.已知2m=a,4n=b,m,n为正整数,则23m+4n=_____.12.如图,六边形是轴对称图形,所在的直线是它的对称轴,若,则的大小是__________.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为_____.14.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)15.如图,,点在的内部,点,分别是点关于、的对称点,连接交、分别于点、;若的周长的为10,则线段_____.16.如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是_________.17.分解因式:a3-a=18.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.三、解答题(共66分)19.(10分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面真角坐标系,已知格点三角形(三角形的三个顶点都在格点上)(1)画出关于直线对称的;并写出点、、的坐标.(2)在直线上找一点,使最小,在图中描出满足条件的点(保留作图痕迹),并写出点的坐标(提示:直线是过点且垂直于轴的直线)20.(6分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)通过平移,使移动到原点的位置,画出平移后的.(3)在中有一点,则经过以上两次变换后点的对应点的坐标为.21.(6分)如图,已知为等边三角形,AE=CD,,相交于点F,于点Q.(1)求证:≌;(2)若,求的长.22.(8分)已知为原点,点及在第一象限的动点,且,设的面积为.(1)求关于的函数解析式;(2)求的取值范围;(3)当时,求点坐标;(4)画出函数的图象.23.(8分)如图,长方形中∥,边,.将此长方形沿折叠,使点与点重合,点落在点处.(1)试判断的形状,并说明理由;(2)求的面积.24.(8分)甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到到达乙地前,何时轿车在货车前30千米.25.(10分)先化简,再从1,0,-1,2中任选一个合适的数作为的值代入求值.26.(10分)某区为加快美丽乡村建设,建设秀美幸福薛城,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投人资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金多少万元?

参考答案一、选择题(每小题3分,共30分)1、A【分析】先由条件证明,再根据全等三角形的性质即可得出结论.【详解】解:由题意得:AC=AD,,∴在和中∴∴∴与的距离为千米故选:A.【点睛】本题全等三角形的应用,读懂图信息,将文字语言转化为几何语言是解题关键.2、D【详解】∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S2甲>S2乙>S2丙>S2丁,∴射箭成绩最稳定的是丁;故选D.3、A【解析】试题分析:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选A.考点:全等三角形的性质4、C【分析】分别根据完全平方公式、合并同类项的法则、单项式乘多项式以及同底数幂的除法法则逐一判断即可.【详解】A.,故本选项错误;B.,故本选项错误;C.,故本选项正确;D.,故本选项错误;故选C.【点睛】本题主要考察整式的加减、完全平方公式和同底数幂的除法,解题关键是熟练掌握计算法则.5、B【分析】根据加权平均数的定义,根据比例即可列式子计算,然后得到答案.【详解】解:根据题意,有:小王的最后得分为:;故选:B.【点睛】本题考查了加权平均数的应用,解题的关键是掌握题意,正确利用比例进行计算.6、B【分析】根据因式分解的定义:把一个多项式写成几个因式乘积的形式,逐个判断即可.【详解】解:A、不是因式分解,故本选不项符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的意义,解决本题的关键是熟练掌握因式分解的意义,明确因式分解的形式是几个因式乘积。7、C【解析】∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选C.8、D【分析】根据题意设三边的长度,再根据边的关系即可得出答案.【详解】一个三角形的三边长度的比例关系是,设这个三角形三边的长度分别为、、,,且,这个三角形是直角三角形,且斜边长为,斜边长是其中一条直角边长的2倍,即这个三角形是有一个锐角为30°的直角三角形,故选:D.【点睛】本题考查了含30度角的直角三角形性质、勾股定理的逆定理,能够得出三角形为直角三角形是解题的关键.9、C【解析】试题分析:根据全等三角形的判定定理,即可得出:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;添加∠A=∠D,根据ASA,可证明△ABC≌△DEF,故B都正确;添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确.故选C.考点:全等三角形的判定.10、C【分析】观察四个选项,都不能用提公因式法分解,再根据平方差公式和完全平方公式的特点对各项进行判断即可.【详解】解:A、m2+n2不能分解因式,本选项不符合题意;B、-m2-n2不能分解因式,本选项不符合题意;C、,能分解因式,所以本选项符合题意;D、m2+mn+n2不能分解因式,本选项不符合题意.故选:C.【点睛】本题考查了多项式的因式分解,熟知平方差公式和完全平方公式的结构特征是解此题的关键.二、填空题(每小题3分,共24分)11、a3b2【解析】∵,∴23m+4n=.故答案为:.12、300°【分析】根据轴对称图形的概念可得∠AFC=∠EFC,∠BCF=∠DCF,再根据题目条件∠AFC+∠BCF=150°,可得到∠AFE+∠BCD的度数.【详解】解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∴∠AFC=∠EFC,∠BCF=∠DCF,∵∠AFC+∠BCF=150°,∴∠AFE+∠BCD=150°×2=300°,故答案为:300°.【点睛】此题主要考查了轴对称的性质,关键是掌握轴对称图形的对称轴两边的图形能完全重合.13、x>﹣1【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【详解】当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为x>﹣1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14、=【分析】探究规律后,写出第n个等式即可求解.【详解】解:…则第n个等式为故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.15、1【分析】连接,,根据对称得出是等边三角形,进而得出答案.【详解】解:连接,,∵、分别是点关于直线、的对称点,,,,,,,CD=CE+EF+DF=PE+EF+PF=1,是等边三角形,.故答案为:1.【点睛】本题依据轴对称的性质,得出是等边三角形是解题关键.16、30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【详解】由AB=AC、BD=BC得∠ABC=∠ACB、∠C=∠BDC,在△ABC中,∠A=40°,∠C=∠ABC,∴∠C=∠ABC=(180°−∠A)=(180°−40°)=70°;在△ABD中,由∠BDC=∠A+∠ABD得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【点睛】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角17、【解析】a3-a=a(a2-1)=18、1【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=1,故答案是:1.考点:勾股定理;正方形的性质.三、解答题(共66分)19、(1)图详见解析,A1(3,2),B1(0,1),C1(1,4);(2)点D坐标为(-1,2).【分析】(1)分别作出点A,B,C关于直线x=−1的对称的点,然后顺次连接,并写出A1,B1,C1的坐标.

(2)作出点B关于x=−1对称的点B1,连接CB1,与x=−1的交点即为点D,此时BD+CD最小,写出点D的坐标.【详解】解:所作图形如图所示:A1(3,2),B1(0,1),C1(1,4);(2)作出点B关于x=-1对称的点B1,连接CB1,与x=-1的交点即为点D,此时BD+CD最小,点D坐标为(-1,2).【点睛】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.20、(1)图见解析;(2)图见解析;(3)【分析】(1)先分别找到A、B、C关于x轴的对称点,然后连接、、即可;(2)先判断移动到原点的位置时的平移规律,然后分别将、按此规律平移,得到、,连接、、即可;(3)根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到,然后根据(2)中的平移规律即可得到的坐标.【详解】解:(1)先分别找到A、B、C关于x轴的对称点,然后连接、、,如下图所示:即为所求(2)∵∴∴到点O(0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将、按此规律平移,得到、,连接、、,如图所示,即为所求;(3)由(1)可知,经过第一次变化后为然后根据(2)的平移规律,经过第二次变化后为故答案为:.【点睛】此题考查的是画已知图形关于x轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x轴对称图形画法、平移后的图形画法、关于x轴对称两点坐标规律和坐标的平移规律是解决此题的关键.21、(1)证明见解析;(2)AD=1.【分析】(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;(2)利用(1)的结果的结果求得∠FBQ=30°,所以由“30度角所对的直角边是斜边的一半”得到BF=2FQ=8,则易求BE=BF+EF=8+1=1.【详解】(1)证明:∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠C=60°,

在△AEB与△CDA中,,

∴△AEB≌△CDA(SAS),

(2)由(1)可知≌,∴,AD=BE又,BF=2FQ=8,∴BE=BF+EF=8+1=1∴AD=1【点睛】本题考查了全等三角形的判定与性质、含30度角的直角三角形,在判定三角形全等时,关键是选择恰当的判定条件.22、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.【分析】(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点P在第一象限即可得出结论;(3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;(4)利用描点法画出函数图象即可.【详解】解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),∴S=×8×y=4y.∵x+y=12,∴y=12−x.∴S=4(12−x)=48−4x,∴所求的函数关系式为:S=−4x+48;(2)由(1)得S=−4x+48>0,解得:x<12;又∵点P在第一象限,∴x>0,综上可得x的取值范围为:0<x<12;(3)∵S=12,∴−4x+48=12,解得x=1.∵x+y=12,∴y=12−1=3,即P(1,3);(4)∵函数解析式为S=−4x+48,∴函数图象是经过点(12,0)(0,48)但不包括这两点的线段.所画图象如图:【点睛】本题考查的是一次函数的应用,根据题意得到函数关系式,并熟知一次函数的图象和性质是解答此题的关键.23、(1)是等腰三角形;(2)1【解析】试题分析:(1)根据翻折不变性和平行线的性质得到两个相等的角,根据等角对等边即可判断△BEF是等腰三角形;(2)根据翻折的性质可得BE=DE,BG=CD,∠EBG=∠ADC=90°,设BE=DE=x,表示出AE=8-x,然后在Rt△ABE中,利用勾股定理列出方程求出x的值,即为BE的值,再根据同角的余角相等求出∠ABE=∠GBF,然后利用“角边角”证明△ABE和△GBF全等,根据全等三角形对应边相等可得BF=BE,再根据三角形的面积公式列式计算即可得解.试题解析:解:(1)△BEF是等腰三角形.∵ED∥FC,∴∠DEF=∠BFE,根据翻折不变性得到∠DEF=∠BEF,故∠BEF=∠BFE.∴BE=BF.△BEF是等腰三角形;(2)∵矩形ABCD沿EF折叠点B与点D重合,∴BE=DE,BG=CD,∠EBG=∠ADC=90°,∠G=∠C=90°,∵AB=CD,∴AB=BG,设BE=DE=x,则AE=AB-DE=8-x,在Rt△ABE中,AB2+AE2=BE2,即42+2=x2,解得x=5,∴BE=5,∵∠ABE+∠EBF=∠ABC=90°,∠GBF+∠EBF=∠EBG=90°,∴∠ABE=∠GBF,在△ABE和△MBF中,∴△ABE≌△GBF(ASA),∴BF=BE=5,∴△EBF的面积=×5×4=1.考点:等腰三角形,全等三角形的性质与判定,勾股定理24、(1)y=120x﹣140(2≤x≤4.5);(2)当x=时,轿车在货车前30千米.【分析】(1)设线段CD对应的函数解析式为y=kx+b,由待定系数法求出其解即可;(2)由货车和轿车相距30千米列出方程解答即可.【详解】(1)设线段CD对应的函数表达式为y=kx+b.将C(2,100)、D(4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论