2022-2023学年广西壮族自治区梧州市岑溪市数学八年级第一学期期末考试试题含解析_第1页
2022-2023学年广西壮族自治区梧州市岑溪市数学八年级第一学期期末考试试题含解析_第2页
2022-2023学年广西壮族自治区梧州市岑溪市数学八年级第一学期期末考试试题含解析_第3页
2022-2023学年广西壮族自治区梧州市岑溪市数学八年级第一学期期末考试试题含解析_第4页
2022-2023学年广西壮族自治区梧州市岑溪市数学八年级第一学期期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为(

)A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)2.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0) B.y值随着x值增大而减小C.它的图象经过第二象限 D.当x>1时,y>03.如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个4.如果把分式中的,都扩大3倍,那么分式的值()A.扩大3倍 B.不变 C.缩小3倍 D.扩大9倍5.已知点(,3),B(,7)都在直线上,则的大小关系为()A. B. C. D.不能比较6.的相反数是()A. B. C. D.7.如果点与点关于轴对称,那么的值等于()A. B. C.l D.40398.下列说法错误的是()A.所有的等边三角形都是全等三角形 B.全等三角形面积相等C.三条边分别相等的两个三角形全等 D.成轴对称的两个三角形全等9.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()学科数学语文英语考试成绩919488A.88 B.90 C.91 D.9210.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为()A.34° B.36° C.38° D.68°二、填空题(每小题3分,共24分)11.直角三角形两直角边长分别为5和12,则它斜边上的高为____________12.如图,已知为中的平分线,为的外角的平分线,与交于点,若,则______.13.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角为_______.14.写出点M(﹣2,3)关于x轴对称的点N的坐标_____.15.已知关于的不等式有解,则实数的取值范围是______.16.二次三项式是一个完全平方式,则k=_______.17.若,,则的值是_________.18.若长方形的面积为a2+a,长为a+ab,则宽为_____.三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,AD=30,CD=10,F是BC的中点,P以每秒1个单位长度的速度从A向D运动,到D点后停止运动;Q沿着路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点P,Q同时出发,当其中一点停止后,另一点也停止运动.设运动时间为t秒,问:(1)经过几秒,以A,Q,F,P为顶点的四边形是平行四边形(2)经过几秒,以A,Q,F,P为顶点的四边形的面积是平行四边形ABCD面积的一半?20.(6分)在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.21.(6分)如图,在平面直角坐标系中,直线与轴交于点,点在直线上,点是线段上的一个动点,过点作轴交直线点,设点的横坐标为.(1)的值为;(2)用含有的式子表示线段的长;(3)若的面积为,求与之间的函数表达式,并求出当最大时点的坐标;(4)在(3)的条件下,把直线沿着轴向下平移,交轴于点,交线段于点,若点的坐标为,在平移的过程中,当时,请直接写出点的坐标.22.(8分)如图,△ABC是等腰直角三角形,且∠ACB=90°,点D是AB边上的一点(点D不与A,B重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE,AE.(1)求证:△CBD≌△CAE;(2)若AD=4,BD=8,求DE的长.23.(8分)如图,在中,,,,在上,且,过点作射线(AN与BC在AC同侧),若动点从点出发,沿射线匀速运动,运动速度为/,设点运动时间为秒.(1)经过_______秒时,是等腰直角三角形?(2)当于点时,求此时的值;(3)过点作于点,已知,请问是否存在点,使是以为腰的等腰三角形?对存在的情况,请求出t的值,对不存在的情况,请说明理由.24.(8分)(1)计算:()×3(2)解方程组25.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.26.(10分)(1)如图1,利用直尺规作图,作出的角平分线,交于点.(2)如图2,在(1)的条件下,若,,,求的长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.2、D【解析】画函数的图象,选项A,点(1,0)代入函数,,错误.由图可知,B,C错误,D,正确.选D.3、C【分析】由等边三角形的性质得出BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,易证∠BCE=∠FCA=150°,由SAS证得△BCE≌△FCA,得出AF=BE,∠AFC=∠EBC,由∠FCA=150°,得出∠FAC<30°,则∠FAE=∠FAC+∠CAE<90°,由∠BFD<∠BFC,得出∠BFD<∠CBF,则DF>BD,即可得出结果.【详解】∵△ACE和△BCF是等边三角形,∴BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,∴∠BCE=90°+60°=150°,∠FCA=60°+90°=150°,∴∠BCE=∠FCA.在△BCE和△FCA中,∵,∴△BCE≌△FCA(SAS),∴AF=BE,∠AFC=∠EBC,故①、②正确;∵∠FCA=60°+90°=150°,∴∠FAC<30°.∵∠CAE=60°,∴∠FAE=∠FAC+∠CAE<90°,故③错误;∵∠BFD<∠BFC,∴∠BFD<∠CBF,∴DF>BD,故④错误.故选:C.【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质、三角形内角和定理、三角形三边关系等知识;熟练掌握等边三角形的性质,证明三角形全等是解题的关键.4、B【分析】根据分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变,可得答案.【详解】.故选:B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.5、A【分析】根据一次函数的性质进行求解即可.【详解】∵∴∴y随着x的增大而减小∴,故选:A.【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的增减性是解决本题的关键.6、B【分析】根据相反数的意义,可得答案.【详解】解:的相反数是-,故选B.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.7、C【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点M(x,y)关于x轴的对称点M′的坐标是(x,-y),进而得出答案.【详解】解:∵点P(a,2019)与点Q(2020,b)关于x轴对称,

∴a=2020,b=-2019,

∴,

故选:C.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.8、A【分析】根据全等三角形的判定和性质、成轴对称图形的概念对各选项分析判断即可解答.【详解】A.所有的等边三角形有大有小,不一定全对,故此选项错误,符合题意;B.全等三角形的面积相等,故此选项正确,不符合题意;C.三条边分别相等的三角形全等,此选项正确,不符合题意;D.成轴对称的两个三角形全等,此选项正确,不符合题意,故选:A.【点睛】本题考查全等三角形的判定与性质、成轴对称图形的概念,熟练掌握全等三角形的判定与性质是解答的关键.9、C【分析】根据“平均分=总分数÷科目数”计算即可解答.【详解】解:(分),故小华的三科考试成绩平均分式91分;故选:C.【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可.10、A【分析】先根据角平分线的定义可得,再根据平行线的判定可得,然后根据平行线的性质即可得.【详解】平分,又故选:A.【点睛】本题考查了角平分线的定义、平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.二、填空题(每小题3分,共24分)11、【分析】先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【详解】∵直角三角形的两直角边长分别为5和12,∴斜边长=∵直角三角形面积S=×5×12=×13×斜边的高,∴斜边的高=.故答案为:.【点睛】本题考查勾股定理及直角三角形面积,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12、56°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACE和∠DCE,再根据角平分线的定义可得∠ABC=2∠DBC,∠ACE=2∠DCE,然后整理即可得解.【详解】由三角形的外角性质得,∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,∵BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∴∠A+∠ABC=2(∠D+∠DBC),整理得,∠A=2∠D,∵∠D=28°,∴∠A=2×28°=56°故答案为:56°.【点睛】本题考查了角平分线与三角形的外角性质,熟练运用外角性质将角度转化是解题的关键.13、135°【分析】根据正多边形的内角和公式计算即可.【详解】∵八边形的内角和为(8-2)×180°=1080°,∴正八边形的每个内角为1080°÷8=135°,故答案为:135°.【点睛】本题考查了正多边形的内角和,掌握知识点是解题关键.14、(-2,-3)【解析】解:根据平面直角坐标系内关于x轴对称,纵坐标互为相反数,横坐标不变,∴点M(-2,3)关于y轴的对称点为(-2,-3).15、【分析】先根据绝对值的意义求出的取值范围,然后根据不等式组解集的确定方法求解即可.【详解】由绝对值的意义可知:是表示数轴上数x对应的点到和对应点的距离之和,则,不等式有解,,即的取值范围是.故答案为:.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.16、±6【分析】根据完全平方公式的展开式,即可得到答案.【详解】解:∵是一个完全平方式,∴;故答案为.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式的展开式.17、1【分析】首先提取公因式,进而将已知代入求出即可.【详解】,,.故答案为:1.【点睛】此题考查因式分解,整式的求值计算,将多项式分解因式后进行计算较为简便.18、【分析】运用长方形的宽等于面积除以长进行计算即可.【详解】解:∵长方形的面积为a2+a,长为a+ab,∴宽为:(a2+a)÷(a+ab)==.故答案为:.【点睛】本题考查整式除法和因式分解,其中对面积和长因式分解是解答本题的关键.三、解答题(共66分)19、(1)秒或秒;(2)15秒【分析】(1)Q点必须在BC上时,A,Q,F,P为顶点的四边形才能是平行四边形,分Q点在BF和Q点在CF上时分类讨论,利用平行四边形对边相等的性质即可求解;(2)分Q点在AB、BC、CD之间时逐个讨论即可求解.【详解】解:(1)∵以A、Q、F、P为顶点的四边形是平行四边形,且AP在AD上,∴Q点必须在BC上才能满足以A、Q、F、P为顶点的四边形是平行四边形∵四边形ABCD是平行四边形,∴AD=BC=30,AB=CD=10,∵点F是BC的中点,∴BF=CF=BC=15,AB+BF=25,情况一:当Q点在BF上时,AP=FQ,且AP=t,FQ=35-3t,故t=25-3t,解得;情况二:当Q点在CF上时,AP=FQ,且AP=t,FQ=3t-35,故t=3t-25,解得t=;故经过或秒,以A、Q、B、P为顶点的四边形是平行四边形;(2)情况一:当Q点在AB上时,0<t<,此时P点还未运动到AD的中点位置,故四边形AQFP面积小于平行四边形ABCD面积的一半,情况二:当Q点在BC上且位于BF之间时,,此时AP+FQ=t+35-3t=35-2t,∵,∴35-2t<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况三:当Q点在BC上且位于FC之间时,此时AP+FQ=t+3t-35=4t-35∵,∴4t-35<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况四:当Q点在CD上时,当AP=BF=15时,t=15,∴,∴当t=15秒时,以A、Q、F、P为顶点的四边形面积是平行四边形ABCD面积的一半,故答案为:15秒.【点睛】本题考查了平行四边形的判定和性质,根据动点的位置不同需要分多种情况分类讨论,熟练掌握平行四边形的性质是解决本题的关键.20、(1)见解析;(2)4【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【详解】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.【点睛】此题主要考查等腰三角形的性质与证明,解题的关键是熟知全等三角形的判定与性质及等腰三角形的性质.21、(1)7;(2);(3),;(4)【分析】(1)直接把点B坐标代入y=x+2求出n的值即可;(2)分别用m表示出点C和点P的坐标,再利用两点间距离公式求出CP的长即可;(3)根据图形得的面积的面积,通过计算可得S,当点与点重合时,有最大值,即时,有最大值,将m=5代求解即可;(4)求出直线DM的解析,进而得出直线MN的解析式,然后把m=5代入求值即可得到结论.【详解】(1)把点代入直线y=x+2得:n=5+2=,故答案为:7;(2)点的横坐标为,点,轴交直线于点,点,;(3)直线与轴交于点,点,的面积的面积,随的增大而增大,点是线段上的一个动点,当点与点重合时,有最大值,即时,有最大值.当时,点;(4)如图,∵直线沿着轴向下平移,交轴于点,交线段于点,∴设MN所在直线解析式为:∵∠DMN=90°,根据两条直线互相垂直,k的值互为相反数,且垂足为M,故可设直线DM的解析式为:y=-x+b,∵点的坐标为,∴,解得,b=,∴直线MN的解析式为:又点N的横坐标为5,∴当x=5时,y=,∴点.【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征,解题的关键是:准确画图,并利用数形结合的思想解决问题.22、(1)见解析;(2)4.【分析】(1)根据CE⊥CD,∠ACB=90°得∠BCD=∠ACE,再根据AC=BC,CE=CD,即可证明△CBD≌△CAE(SAS);(2)通过△CBD≌△CAE(SAS)得出BD=AE,∠DAE=90°,根据勾股定理求出DE的长即可.【详解】(1)∵CE⊥CD,∠ACB=90°,∴∠DCE=∠ACB=90°,∴∠BCD=∠ACE,∵AC=BC,CE=CD,在△BCD与△ACE中,,∴△CBD≌△CAE(SAS).(2)∵△CBD≌△CAE,∴BD=AE,∠CBD=∠CAE=45°,∴∠DAE=90°,∴.【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.23、(1)6;(1)8;(3)1【分析】(1)得出两腰AM=AP时,即可得出答案;(1)根据垂直的定义和同角的余角相等得到∠CBA=∠AMP,证明△ACB≌△PAM,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出BM的值,可知BD>BM,则不存在点P使的等腰三角形,又由AM<BM,则存在点P使的等腰三角形,可证△MCB≌△PAM得PA的长,即可求出t的值.【详解】解:(1)∵∠PAM=90°,当是等腰直角三角形时,则有PA=AM=6cm,∴t=6÷1=6(s)故答案为:6;(1)∵,∴∠AQM=90°,∠PAM=90°,∴∠AMP+∠BAC=90°,又∵∠C=90°,∴∠CBA+∠BAC=90°,∴∠AMP=∠CBA,在△ACB和△PAM中,,∴△ACB≌△PAM(ASA),∴PA=AC,∵,∴,∴t=8÷1=8(s),此时的值为8;(3)∵,,,,∴,由勾股定理得:,∵,,∴BD>BM,则不存在点P使的等腰三角形,又∵AM<BM,则存在点P使的等腰三角形,在Rt△MCB和Rt△PAM中,,∴△MCB≌△PAM(HL),∴PA=CM=1cm,∴t=1÷1=1(s),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论