版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=AC,∠A=40º,DE垂直平分AC,则∠BCD的度数等于()A.20º B.30ºC.40º D.50º2.如图所示,在矩形ABCD中,垂直于对角线BD的直线,从点B开始沿着线段BD匀速平移到D.设直线被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A. B. C. D.3.下列计算正确的是()A.=2 B.﹣=2C.=1 D.=3﹣24.下列根式中,最简二次根式是()A. B. C. D.5.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形6.某校八年级一班抽取5名女生进行800米跑测试,她们的成绩分别为75,85,90,80,90(单位:分),则这次抽测成绩的众数和中位数分别是()A.90,85 B.85,84 C.84,90 D.90,907.下列计算正确的是()A. B.(x+2)(x—2)=x—2 C.(a+b)=a+b D.(-2a)=4a8.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤39.如图,在中,,的垂直平分线交于点,连接,若的周长为17,则的长为()A.6 B.7 C.8 D.910.现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄,如图是兴庆公园的一角,有人为了抄近道而避开横平竖直的路的拐角∠ABC,而走“捷径AC’于是在草坪内走出了一条不该有的“路AC”,已知AB=40米,BC=30米,他们踩坏了___米的草坪,只为少走___米路()A.20、50 B.50、20 C.20、30 D.30、2011.如图△ABC,AB=7,AC=3,AD是BC边上的中线则AD的取值范围为()A.4<AD<10 B.2<AD<5 C.1<AD< D.无法确定12.如图,点C在AB上,、均是等边三角形,、分别与交于点,则下列结论:①;②;③为等边三角形;④∥;⑤DC=DN正确的有()个A.2个 B.3个 C.4个 D.5二、填空题(每题4分,共24分)13.克盐溶解在克水中,取这种盐水克,其中含盐__________克.14.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b=ax﹣2的解为x=_____.15.当a=2018时,分式的值是_____.16.若,则分式的值为__________.17.已知一直角三角形的木板,三边的平方和为1800,则斜边长为.18.一个多边形的内角比四边形内角和多,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是__________.三、解答题(共78分)19.(8分)(1)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);(2)A点到原点的距离是;(3)将点C向x轴的负方向平移6个单位,它与点重合;(4)连接CE,则直线CE与y轴是什么位置关系;(5)点D分别到x、y轴的距离是多少.20.(8分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.21.(8分)描述证明:小明在研究数学问题时发现了一个有趣的现象:(1)请你用数学表达式补充完整小明发现的这个有趣的现象;(2)请你证明小明发现的这个有趣现象.22.(10分)在日常生活中,取款、上网等都需要密码.有一种用“因式分解”法设计的密码.原理是:如:多项式因式分解的结果是,若取时,则各个因式的值是:,将3个数字按从小到大的顺序排列,于是可以把“400804”作为一个六位数的密码.对于多项式,当时,写出用上述方法产生的密码,并说明理由.23.(10分)化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.24.(10分)已知:如图,,//,,且点、、、在同一条直线上.求证://.25.(12分)在中,,,点是上一点.(1)如图,平分.求证:;(2)如图,点在线段上,且,,求证:.(3)如图,,过点作交的延长线于点,连接,过点作交于,求证:.26.基本图形:在RT△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=7,CD=2,则AD的长为.
参考答案一、选择题(每题4分,共48分)1、B【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,即可求∠BCD的度数.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠ACB=70°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=40°∴∠BCD=∠ACB﹣∠ACD=30°.故选:B【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.2、A【解析】∵直线l从点B开始沿着线段BD匀速平移到D,∴在B点时,EF的长为0,在A点长度最大,到D点长为0,∴图象A符合题意,故选A.3、C【分析】利用二次根式的加减法对、进行判断;根据二次根式的乘法法则对进行判断;利用完全平方公式对进行判断.【详解】解:、,所以选项错误;、,所以选项错误;、,所以选项正确;、,所以选项错误.故选:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4、B【解析】直接利用最简二次根式的定义分析得出答案.【详解】解:A、=,故选项错误;B、不能再化简,故选项正确;C、=,故选项错误;D、=,故选项错误;故选B.【点睛】本题考查最简二次根式的定义,根据最简二次根式的定义进行判断是解题的关键.5、C【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C【点睛】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.6、A【分析】由题意直接根据众数和中位数的概念,结合题干数据求解即可.【详解】解:将这组数据按照从小到大的顺序排列为:75,80,1,90,90,则众数为90,中位数为1.故选:A.【点睛】本题考查众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7、D【解析】分别根据同底数幂乘法、积的乘方、平方差公式、完全平方公式,对各选项计算后利用排除法求解.【详解】解:A.,故A选项不正确;B.(x+2)(x—2)=x-4,故B选项不正确;C.(a+b)=a+b+2ab,故C选项不正确;D.(-2a)=4a,故D选项正确.故选:D【点睛】本题考查了整式乘法,熟练掌握运算性质是解题的关键.8、C【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【详解】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选C.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的性质是解题关键.9、B【分析】根据线段垂直平分线的性质可得AD=BD,AB=2AE,把△BCD的周长转化为AC、BC的和,然后代入数据进行计算即可得解.【详解】∵DE是AB的垂直平分线,
∴AD=BD,AB=2AE=10,
∵△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=11,
∵AB=AC=10,
∴BC=11-10=1.
故选:B.【点睛】此题考查线段垂直平分线的性质.此题比较简单,解题的关键是掌握垂直平分线上任意一点,到线段两端点的距离相等定理的应用.10、B【分析】根据勾股定理求出AC即可解决问题.【详解】在Rt△ABC中,∵AB=40米,BC=30米,∴AC50,30+40﹣50=20,∴他们踩坏了50米的草坪,只为少走20米的路.故选:B.【点睛】本题考查了勾股定理,解题的关键是理解题意,属于中考基础题.11、B【分析】先延长AD到E,且AD=DE,并连接BE,由于∠ADC=∠BDE,AD=DE,利用SAS易证△ADC≌△EDB,从而可得AC=BE,在△ABE中,再利用三角形三边的关系,可得4<AE<10,从而易求2<AD<1.【详解】延长AD到E,使AD=DE,连接BE,如图所示:∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=3,在△AEB中,AB-BE<AE<AB+BE,即7-3<2AD<7+3,∴2<AD<1,故选:B.【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.12、C【分析】首先根据等边三角形的性质,运用SAS证明△ACE≌△DCB,即可得出AE=DB;再由ASA判定△AMC≌△DNC,得出CM=CN;由∠MCN=60°得出△CMN为等边三角形;再由内错角相等两直线平行得出MN∥BC;最后由∠DCN=∠CNM=60°,得出DC≠DN,即可判定.【详解】∵、均是等边三角形,∴∠DCA=∠ECB=60°,AC=DC,EC=BC∴∠DCE=60°∴∠DCA+∠DCE=∠ECB+∠DCE,即∠ACE=∠DCB∴△ACE≌△DCB(SAS)∴AE=DB,故①正确;∵△ACE≌△DCB,∴∠MAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠MCA=∠DCN=60°,在△AMC和△DNC中∴△AMC≌△DNC(ASA),∴CM=CN,故②正确;∴△CMN为等边三角形,故③正确;∴∠NMC=∠NCB=60°,∴MN∥BC.故④正确;∵∠DCN=∠CNM=60°∴DC≠DN,故⑤错误;故选:C.【点睛】本题主要考查全等三角形的判定和性质,能灵活运用SSS、SAS、ASA、AAS和HL证明三角形全等是解题的关键.二、填空题(每题4分,共24分)13、【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【详解】解:该盐水的浓度为:,故这种盐水m千克,则其中含盐为:m×=克.故答案为:.【点睛】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.14、﹣1.【分析】直线y=3x+b与y=ax-1的交点的横坐标为-1,则x=-1就是关于x的方程3x+b=ax-1的解.【详解】∵直线y=3x+b与y=ax﹣1的交点的横坐标为﹣1,∴当x=﹣1时,3x+b=ax﹣1,∴关于x的方程3x+b=ax﹣1的解为x=﹣1.故答案为﹣1.15、1【分析】首先化简分式,然后把a=2018代入化简后的算式,求出算式的值是多少即可.【详解】当a=2018时,,=,=,=,=a+1,=2018+1,=1.故答案为1.【点睛】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.16、1【分析】首先将已知变形进而得出x+y=2xy,再代入原式求出答案.【详解】∵∴x+y=2xy∴====1故答案为:1.【点睛】此题主要考查了分式的值,正确将已知变形进而化简是解题关键.17、1.【详解】∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为1800,则斜边的平方为三边平方和的一半,即斜边的平方为=900,∴斜边长==1.故答案是:1.18、【解析】设边数为x,根据多边形的内角和公式即可求解.【详解】设边数为x,依题意可得(x-2)×180°-360°=720°,解得x=8∴这个多边形的每个内角的度数是1080°÷8=135°,故填135°.【点睛】此题主要考查多边形的内角度数,解题的关键是熟知多边形的内角和公式.三、解答题(共78分)19、(1)作图见解析;(2)1;(1)D;(4)平行;(5)点D到x轴的距离是5;点D到y轴的距离是1【解析】(1)根据点的坐标直接描点即可;(2)根据A点坐标可得出A点在x轴上,即可得出A点到原点的距离;
(1)根据点的平移的性质得出平移后的位置;
(4)利用图形性质得出直线CE与坐标轴的位置关系;
(5)利用D点的横纵坐标得出点D分别到x、y轴的距离.【详解】解:(1)描点如下:(2)如图所示:A点到原点的距离是1;故答案为:1(1)将点C向x轴的负方向平移6个单位,它与点D重合;故答案为:D(4)如图所示:CE∥y轴;(5)点D分别到x、y轴的距离分别是5和1.20、50°【解析】试题分析:根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.试题解析:解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.考点:平行线的性质.21、(1);;(2)先通分,再根据完全平方公式分解因式,然后去分母即可得到结论.【分析】(1)依据题意,用含“a”、“b”的式子把题中描述的数量关系表达出来即可;(2)把(1)中条件中所列的式子通过分式的运算化简,再结合乘法公式进行变形,就可得到结论;【详解】解:(1)如果,那么;(2)证明:∵,∴,∴,∴;又∵a、b均为正数,∴.【点睛】此题主要考查的是分式的加减运算及完全平方公式的应用.解(2)时,由条件“,”右边是整式,而左边是异分母分式的加、减,易知需将左边化简;而当化简得到“”时,熟悉“完全平方公式”的同学就已经非常清楚该怎样做了.22、011920,理由见解析.【分析】先将多项式通过提公因式法和公式法进行因式分解后,再将代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【详解】解:当时,,∴这个密码是:.【点睛】本题考查的知识点是多项式的因式分解,掌握两种常用的提公因式法和公式法的要点是解题的关键.23、,1.【解析】根据分式的加法和除法可以化简题目中的式子,然后从-2,-1,0,1,2中选取一个使得原分式有意义的值代入化简后的式子即可解答即可.【详解】(1)=[]=(),当a=﹣2时,原式1.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24、见解析【分析】先利用平行线的性质和等量代换得出,,然后利用SAS即可证明,则有,最后利用同位角相等,两直线平行即可证明.【详解】解:,.,,即.在和中,,,.【点睛】本题主要考查全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形的判定及性质和平行线的判定及性质是解题的关键.25、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长AC至E,使CE=CD,利用AAS证出△BAD≌△EAD,从而得出AB=AE,即可证出结论;(2)过点C作CF⊥EC交AD的延长线于点F,连接BF,先利用SAS证出△ACE≌△BCF,从而证出AE=BF,∠CEA=∠CFB,再证出∠EFB=90°,利用30°所对的直角边是斜边的一半即可证出结论;(3)过点C作CE⊥AM于M,先利用AAS证出△CNA≌△CMB,即可证出CN=CM,根据等腰三角形的性质可得NE=EM,然后利用AAS证出△CED≌△BMD,从而得出ED=DM,然后根据线段的关系即可得出结论.【详解】解:(1)延长AC至E,使CE=CD∵,∴∠ECD=180°-∠ACB=90°,∠B=∠CAB=(180°-∠ACB)=45°∴△CDE为等腰三角形∴∠E=45°∴∠B=∠E∵平分∴∠BAD=∠EAD在△BAD和△EAD中∴△BAD≌△EAD∴AB=AE∵AE=AC+CE=AC+CD∴AB=AC+CD(2)过点C作CF⊥EC交AD的延长线于点F,连接BF∵∠CED=45°∴△CEF为等腰直角三角形∴CE=CF,∠CFE=∠CEF=45°∵△ABC为等腰直角三角形∴∠ACB=90°,CA=CB,∴∠ACE+∠ECB=90°,∠BCF+∠ECB=90°∴∠ACE=∠BCF在△ACE和△BCF中∴△ACE≌△BCF∴AE=BF,∠CEA=∠CFB∵∠CEA=180°-∠CEF=135°∴∠CFB=135°∴∠EFB=∠CFB-∠CFE=90°在Rt△EFB中,∠BEF=30°∴BE=2BF∴BE=2AE(3)过点C作CE⊥AM于M,∵△ABC为等腰直角三角形∴∠ACB=90°,CA=CB∵CN⊥CM,BM⊥AM∴∠NCM=90°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新购销合同撰写
- 食堂蔬菜采购合同样本
- 彩钢瓦购买合同样本
- 跨领域合同翻译挑战与机遇并存
- 小学生认真学习承诺
- 2024【合伙协议】合伙人协议合同范本
- 2024安装合同范本范本
- 2024设备监理师考试试题设备监理合同管理
- 父母现金赠予合同范例
- 工业胶售货合同范例
- A10联盟2025届高三上学期11月段考 历史试卷 (含官方答案解析)
- 2024年巴西劳动市场变化与挑战
- 2024-2030年中国建筑施工行业运行状况及发展规模分析报告
- 放射科专科护理模拟题含参考答案
- 家政培训讲师课件
- 2024年大型科学仪器共享与服务合作协议
- 2024-2025学年苏科版七年级数学上册期中复习试卷
- 露天矿安全生产年度总结
- 生态文明学习通超星期末考试答案章节答案2024年
- 2023秋部编版四年级语文上册第2单元大单元教学设计
- (完整版)新概念英语第一册单词表(打印版)
评论
0/150
提交评论