湖北省华中学师范大第一附属中学2022-2023学年九年级数学第一学期期末质量检测试题含解析_第1页
湖北省华中学师范大第一附属中学2022-2023学年九年级数学第一学期期末质量检测试题含解析_第2页
湖北省华中学师范大第一附属中学2022-2023学年九年级数学第一学期期末质量检测试题含解析_第3页
湖北省华中学师范大第一附属中学2022-2023学年九年级数学第一学期期末质量检测试题含解析_第4页
湖北省华中学师范大第一附属中学2022-2023学年九年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,,将绕点旋转到'的位置,使得,则的大小为()A. B. C. D.2.如图,,相交于点,.若,,则与的面积之比为()A. B. C. D.3.如图,的直径垂直于弦,垂足是点,,,则的长为()A. B. C.6 D.124.下列是随机事件的是()A.口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B.平行于同一条直线的两条直线平行C.掷一枚图钉,落地后图钉针尖朝上D.掷一枚质地均匀的骰子,掷出的点数是75.已知二次函数,下列说法正确的是()A.该函数的图象的开口向下 B.该函数图象的顶点坐标是C.当时,随的增大而增大 D.该函数的图象与轴有两个不同的交点6.如图,中,,若,,则边的长是()A.2 B.4 C.6 D.87.一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是A.60° B.90° C.120° D.180°8.若关于的一元二次方程有两个不相等的实数根,则的取值范围是(

)A. B.且 C. D.且9.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2C.3 D.410.如果,那么下列比例式中正确的是()A. B. C. D.11.如图,在▱APBC中,∠C=40°,若⊙O与PA、PB相切于点A、B,则∠CAB=()A.40° B.50° C.60° D.70°12.如图,分别与相切于点,为上一点,,则()A. B. C. D.二、填空题(每题4分,共24分)13.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.14.已知关于的方程的一个根为-2,则方程另一个根为__________.15.一元二次方程的两根之积是_________.16.如图,在中,,于点D,于点E,F、G分别是BC、DE的中点,若,则FG的长度为__________.17.在矩形中,点是边上的一个动点,连接,过点作与点,交射线于点,连接,则的最小值是_____________18.如图,在平行四边形ABCD中,点E在AD边上,且AE:ED=1:2,若EF=4,则CE的长为___三、解答题(共78分)19.(8分)如图,在中,,,,动点从点出发,沿方向匀速运动,速度为;同时,动点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.设点,运动的时间是.过点作于点,连接,.(1)为何值时,?(2)设四边形的面积为,试求出与之间的关系式;(3)是否存在某一时刻,使得若存在,求出的值;若不存在,请说明理由;(4)当为何值时,?20.(8分)如图,是的直径,是圆上的两点,且,.(1)求的度数;(2)求的度数.21.(8分)已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线解析式;(2)点C(m,0)在线段OA上(点C不与A,O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=AD,求m的值;(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D,B,M,N为顶点的四边形为平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.22.(10分)计算:3×÷223.(10分)某服装店用1440元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用3240元,再次以比第一次进价多4元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?24.(10分)阅读下列材料,然后解答问题.经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S1.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积为S.(1)当OM经过点A时(如图①),则S、S1、S1之间的关系为:(用含S1、S1的代数式表示);(1)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论任然成立吗:请说明理由.25.(12分)如图,在矩形ABCD中,AB=6,BC=4,动点Q在边AB上,连接CQ,将△BQC沿CQ所在的直线对折得到△CQN,延长QN交直线CD于点M.(1)求证:MC=MQ(2)当BQ=1时,求DM的长;(3)过点D作DE⊥CQ,垂足为点E,直线QN与直线DE交于点F,且,求BQ的长.26.已知二次函数y=ax2+bx+4经过点(2,0)和(﹣2,12).(1)求该二次函数解析式;(2)写出它的图象的开口方向、顶点坐标、对称轴;(3)画出函数的大致图象.

参考答案一、选择题(每题4分,共48分)1、B【分析】由平行线的性质可得∠C'CA=∠CAB=64°,由折叠的性质可得AC=AC',∠BAB'=∠CAC',可得∠ACC'=∠C'CA=64°,由三角形内角和定理可求解.【详解】∵CC′∥AB,

∴∠C'CA=∠CAB=64°,

∵将△ABC绕点A旋转到△AB′C′的位置,

∴AC=AC',∠BAB'=∠CAC',

∴∠ACC'=∠C'CA=64°,

∴∠C'AC=180°−2×64°=52°,

故选:B.【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键.2、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比为:1:2.∴△AOB和△DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.3、A【分析】先根据垂径定理得到,再根据圆周角定理得到,可得为等腰直角三角形,所以,从而得到的长.【详解】∵,AB为直径,∴,∵∠BOC和∠A分别为所对的圆心角和圆周角,∠A=22.5°,∴,∴为等腰直角三角形,∵OC=6,∴,∴.故选A.【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.4、C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A.口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B.平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C.掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D.掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、D【分析】根据二次函数的性质解题.【详解】解:A、由于y=x2-4x-3中的a=1>0,所以该抛物线的开口方向是向上,故本选项不符合题意.

B、由y=x2-4x-3=(x-2)2-7知,该函数图象的顶点坐标是(2,-7),故本选项不符合题意.

C、由y=x2-4x-3=(x-2)2-7知,该抛物线的对称轴是x=2且抛物线开口方向向上,所以当x>2时,y随x的增大而增大,故本选项不符合题意.

D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,则该抛物线与x轴有两个不同的交点,故本选项符合题意.

故选:D.【点睛】考查了抛物线与x轴的交点,二次函数的性质,需要利用二次函数图象与系数的关系,二次函数图象与x轴交点的求法,配方法的应用等解答,难度不大.6、C【分析】由,∠A=∠A,得∆ABD~∆ACB,进而得,求出AC的值,即可求解.【详解】∵,∠A=∠A,∴∆ABD~∆ACB,∴,即:,∴AC=8,∴CD=AC-AD=8-2=6,故选C.【点睛】本题主要考查相似三角形的判定和性质定理,掌握相似三角形的判定定理,是解题的关键.7、B【解析】试题分析:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的4倍,∴4πr2=πrR.∴R=4r.∴底面周长=πR.∵圆锥的底面周长等于它的侧面展开图的弧长,∴设圆心角为n°,有,∴n=1.故选B.8、B【分析】根据一元二次方程的定义和根的判别式列出不等式求解即可.【详解】由题意得:解得:且故选:B.【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.9、B【分析】根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE=AE2∴CE=BC﹣BE=AD﹣BE=10﹣8=1.故选B.考点:矩形的性质;角平分线的性质.10、C【分析】根据比例的性质,若,则判断即可.【详解】解:故选:C.【点睛】本题主要考查了比例的性质,灵活的利用比例的性质进行比例变形是解题的关键.11、D【分析】根据切线长定理得出四边形APBC是菱形,再根据菱形的性质即可求解.【详解】解:∵⊙O与PA、PB相切于点A、B,∴PA=PB∵四边形APBC是平行四边形,∴四边形APBC是菱形,∴∠P=∠C=40°,∠PAC=140°∴∠CAB=∠PAC=70°故选D.【点睛】此题主要考查圆的切线长定理,解题的关键是熟知菱形的判定与性质.12、A【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,最后根据圆周角定理解答.【详解】解:连接OA,OB,

∵PA,PB分别与⊙O相切于A,B点,

∴∠OAP=90°,∠OBP=90°,

∴∠AOB=360°-90°-90°-66°=114°,

由圆周角定理得,∠C=∠AOB=57°,

故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.,,方程有两个不相等的实数根,,.故答案为:.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14、1【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.15、【分析】根据一元二次方程两根之积与系数的关系可知.【详解】解:根据题意有两根之积x1x2==-1.

故一元二次方程-x2+3x+1=0的两根之积是-1.

故答案为:-1.【点睛】本题重点考查了一元二次方程根与系数的关系,是基本题型.两根之积x1x2=.16、1【分析】连接EF、DF,根据直角三角形的性质得到EF=BC=20,得到FE=FD,根据等腰三角形的性质得到FG⊥DE,GE=GD=DE=12,根据勾股定理计算即可.【详解】解:连接EF、DF,

∵BD⊥AC,F为BC的中点,

∴DF=BC=20,

同理,EF=BC=20,

∴FE=FD,又G为DE的中点,

∴FG⊥DE,GE=GD=DE=12,由勾股定理得,FG==1,故答案为:1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17、【分析】根据题意可点G在以AB为直径的圆上,设圆心为H,当HGC在一条直线上时,CG的值最值,利用勾股定理求出CH的长,CG就能求出了.【详解】解:点的运动轨迹为以为直径的为圆心的圆弧。连结GH,CH,CG≥CH-GH,即CG=CH-GH时,也就是当三点共线时,值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案为:【点睛】本题考查了矩形的性质、勾股定理、三角形三边的关系.CGH三点共线时CG最短是解决问题的关键.把动点转化成了定点,问题就迎刃而解了..18、1【分析】根据AE:ED=1:2,得到BC=3AE,证明△DEF∽△BCF,得到,求出FC,即可求出CE.【详解】解:∵AE:ED=1:2,∴DE=2AE,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案为:1.【知识点】本题考查平行四边形的性质、相似三角形的判定与性质,理解相似三角形的判定与性质定理是解题关键.三、解答题(共78分)19、(1)当t=时,DE⊥AC;(2);(3)当t=时,;(4)t=时,=【分析】(1)若DE⊥AC,则∠EDA=90°,易证△ADE∽△ABC,进而列出关于t的比例式,即可求解;(2)由△CDF∽△CAB,得CF=,BF=8﹣,进而用割补法得到与之间的关系式,进而即可得到答案;(3)根据,列出关于t的方程,即可求解;(4)过点E作EM⊥AC于点M,易证△AEM∽△ACB,从而得EM=,AM=,进而得DM=,根据当DM=ME时,=,列出关于t的方程,即可求解.【详解】(1)∵∠B=,AB=6cm,BC=8cm,∴AC=10cm,若DE⊥AC,则∠EDA=90°,∴∠EDA=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴,即,∴t=,答:当t=时,DE⊥AC;(2)∵DF⊥BC,∴∠DFC=90°,∴∠DFC=∠B,∵∠C=∠C,∴△CDF∽△CAB,∴,即,∴CF=,∴BF=8﹣,∴;(3)若存在某一时刻t,使得,根据题意得:,解得:,答:当t=时,;(4)过点E作EM⊥AC于点M,则△AEM∽△ACB∴=,∴,∴EM=,AM=,∴DM=10-2t-=,在Rt△DEM中,当DM=ME时,=,∴,解得:t=即:当t=时,=.【点睛】本题主要考查相似三角形的判定和性质定理综合,通过相似三角形的性质,用代数式表示相关线段,进而列出方程,是解题的关键.20、(1);(2).【分析】(1)根据AB是⊙O直径,得出∠ACB=90°,进而得出∠B=70°;(2)根据同弧所对的圆心角等于圆周角的2倍,得到圆心角∠AOC的度数,根据同弧所对的圆周角等于所对圆心角的一半,可求出∠ACD的度数.【详解】(1)∵AB是⊙O直径,

∴∠ACB=90,

∵∠BAC=20,

∴∠ABC=70,(2)连接OC,OD,如图所示:∴∠AOC=2∠ABC=140,∵,

∴∠COD=∠AOD=∴∠ACD=.【点睛】本题主要考查了圆周角定理的推论与定理,以及弦,弧,圆心角三者的关系,要求学生根据题意,作出辅助线,建立未知角与已知角的联系,利用同弧(等弧)所对的圆心角等于所对圆周角的2倍来解决问题.21、(1)y=﹣x2﹣2x+3;(2)m=﹣2;(3)存在,点N的坐标为(﹣1,﹣2)或(﹣1,0),理由见解析【分析】(1)先确定出点A,B坐标,再用待定系数法即可得出结论;(2)先表示出DE,再利用勾股定理表示出AD,建立方程即可得出结论;(3)分两种情况:①以BD为一边,判断出△EDB≌△GNM,即可得出结论.②以BD为对角线,利用中点坐标公式即可得出结论.【详解】(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,x=﹣3,∴A(﹣3,0),把A(﹣3,0),B(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3,(2)∵CD⊥OA,C(m,0),∴D(m,m+3),E(m,﹣m2﹣2m+3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∵AC=m+3,CD=m+3,由勾股定理得:AD=(m+3),∵DE=AD,∴﹣m2﹣3m=2(m+3),∴m1=﹣3(舍),m2=﹣2;(3)存在,分两种情况:①以BD为一边,如图1,设对称轴与x轴交于点G,∵C(﹣2,0),∴D(﹣2,1),E(﹣2,3),∴E与B关于对称轴对称,∴BE∥x轴,∵四边形DNMB是平行四边形,∴BD=MN,BD∥MN,∵∠DEB=∠NGM=90°,∠EDB=∠GNM,∴△EDB≌△GNM,∴NG=ED=2,∴N(﹣1,﹣2);②当BD为对角线时,如图2,此时四边形BMDN是平行四边形,设M(n,﹣n2﹣2n+3),N(﹣1,h),∵B(0,3),D(-2,1),∴∴n=-1,h=0∴N(﹣1,0);综上所述,点N的坐标为(﹣1,﹣2)或(﹣1,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式,根据线段之间的数量关系求点坐标,根据点的位置构建平行四边形,(3)中以BD为对角线时,利用中点坐标公式计算更简单.22、【分析】根据二次根式的乘法法则:(a≥0,b≥0)和除法法则:(a≥0,b>0)进行计算即可.【详解】解:原式=【点睛】本题主要考查二次根式的乘除混合运算,掌握二次根式乘除法的运算法则是解题的关键.23、(1)45;(2)1.【分析】(1)设该服装店第一次购买了此种服装x件,则第二次购进2x件,根据单价=总价÷数量结合第二次购进单价比第一次贵4元,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)根据销售单价×销售数量-两次进货总价=利润,即可求出结论.【详解】解:(1)设该服装店第一次购买了此种服装件,则第二次购进件,根据题意得:解得:经检验:是原方程的根,且符合题意.答:该服装店第一次购买了此种服装45件.(2)(元)答:两次出售服装共盈利1元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.24、(1);(1)(1)中的结论仍然成立,理由见解析;(1)(1)中的结论仍然成立,理由见解析.【解析】试题分析:(1)结合正方形的性质及等腰直角三角形的性质,容易得出结论;(1)仍然成立,可证得四边形OGHB为正方形,则可求出阴影部分的面积为扇形OEF的面积减去正方形OGBH的面积;(3)仍然成立,过O作OR⊥AB,OS⊥BC,垂足分别为R、S,则可证明△ORG≌△OSH,可得出四边形ORBS的面积=四边形OGBH的面积,再利用扇形OEF的面积减正方形ORBS的面积即可得出结论.试题解析:(1)当OM经过点A时由正方形的性质可知:∠MON=90°,∴S△OAB=S正方形ABCD=S1,S扇形OEF=S圆O=S1,∴S=S扇形OEF-S△OAB=S圆O-S正方形ABCD=S1-S1=(S1-S1),(1)结论仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圆O=S1∵∠OGB=∠EOF=∠ABC=90°,∴四边形OGBH为矩形,∵OM⊥AB,∴BG=AB=BC=BH,∴四边形OGBH为正方形,∴S四边形OGBH=BG1=(AB)1=S1,∴S=S扇形OEF-S四边形OGBH=S1-S1=(S1-S1);(3)(1)中的结论仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圆O=,过O作OR⊥AB,OS⊥BC,垂足分别为R、S,由(1)可知四边形ORBS为正方形,∴OR=OS,∵∠ROS=90°,∠MON=90°,∴∠ROG=∠SOH=90°-∠GOS,在△ROG和△SOH中,,∴△ROG≌△SOH(ASA),∴S△ORG=S△OSH,∴S四边形OGBH=S正方形ORBS,由(1)可知S正方形ORBS=S1,∴S四边形OGBH=S1,∴S=S扇形OEF-S四边形OGBH=(S1-S1).考点:圆的综合题.25、(1)见解析;(2)2.1;(3)或2【分析】(1)由矩形的性质得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折叠的性质得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,证出MC=MQ.

(2)设DM=x,则MQ=MC=6+x,MN=1+x,在Rt△CNM中,由勾股定理得出方程,解方程即可.

(3)分两种情况:①当点M在CD延长线上时,由(1)得:∠MCQ=∠CQM,证出∠FDM=∠F,得出MD=MF,过M作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论