河南省长垣县2022-2023学年九年级数学第一学期期末质量检测试题含解析_第1页
河南省长垣县2022-2023学年九年级数学第一学期期末质量检测试题含解析_第2页
河南省长垣县2022-2023学年九年级数学第一学期期末质量检测试题含解析_第3页
河南省长垣县2022-2023学年九年级数学第一学期期末质量检测试题含解析_第4页
河南省长垣县2022-2023学年九年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若反比例函数的图象过点A(5,3),则下面各点也在该反比例函数图象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)2.如图,在平面直角坐标系中,将绕着旋转中心顺时针旋转,得到,则旋转中心的坐标为()A. B.C. D.3.如图,在中,点在边上,且,,过点作,交边于点,将沿着折叠,得,与边分别交于点.若的面积为,则四边形的面积是()A. B. C. D.4.如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是()A.50° B.40° C.30° D.45°5.下列成语所描述的事件是必然事件的是()A.水涨船高 B.水中捞月 C.一箭双雕 D.拔苗助长6.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是()A. B. C. D.7.已知反比例函数的解析式为,则的取值范围是A. B. C. D.8.若直线与半径为5的相离,则圆心与直线的距离为()A. B. C. D.9.如图,在平面直角坐标系中,点、在函数的图象上,过点分别作轴、轴的垂线,垂足为、;过点分别作轴、轴的垂线,垂足为、.交于点,随着的增大,四边形的面积()A.增大 B.减小 C.先减小后增大 D.先增大后减小10.已知关于的一元二次方程有两个相等的实数根,则()A.4 B.2 C.1 D.﹣411.下列关系式中,属于二次函数的是(x是自变量)A.y=x2 B.y= C.y= D.y=ax2+bx+c12.在Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()A.15 B.12 C.13 D.14二、填空题(每题4分,共24分)13.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为______cm.14.已知,=________.15.如图,矩形ABCD中,AB=3cm,AD=6cm,点E为AB边上的任意一点,四边形EFGB也是矩形,且EF=2BE,则S△AFC=__________cm2.16.如果反比例函数的图象经过点,则该反比例函数的解析式为____________17.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)18.如图,已知l1∥l2∥l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知AE=EF=1,FB=3,则=_____.三、解答题(共78分)19.(8分)如图,抛物线y=﹣x2+bx+c与x轴负半轴交于点A,正半轴交于点B,OA=2OB=1.求抛物线的顶点坐标.20.(8分)如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA·PB=PC·PD(1)如图(2),若AB与CD相交于圆外一点P,上面的结论是否成立?请说明理由.(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C,直接写出PA、PB、PC之间的数量关系.(3)如图(3),直接利用(2)的结论,求当PC=,PA=1时,阴影部分的面积.21.(8分)如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.22.(10分)为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A.数学思维,B.文学鉴赏,C.红船课程,D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)请将条形统计图补充完整;(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.23.(10分)如图,已知△ABC中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,连接BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求BD的长;(2)求证△BGE∽△CEF;(3)连接FG,当△GEF是等腰三角形时,直接写出BE的所有可能的长度.24.(10分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?25.(12分)如图,一次函数y=kx+b的图象分别交x轴,y轴于A(4.0),B(0,2)两点,与反比例函数y=的图象交于C.D两点,CE⊥x轴于点E且CE=1.(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出:不等式0<kx+b<的解集.26.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是_______元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为5元的人数所占的圆心角度数是_____度;(3)一周内的零花钱数额为20元的有5人,其中有2名是女生,3名是男生,现从这5人中选2名进行个别教育指导,请用画树状图或列表法求出刚好选中2名是一男一女的概率.

参考答案一、选择题(每题4分,共48分)1、D【解析】先利用待定系数法求出反比例函数的解析式,然后将各选项的点代入验证即可.【详解】将点代入得:,解得则反比例函数为:A、令,代入得,此项不符题意B、令,代入得,此项不符题意C、令,代入得,此项不符题意D、令,代入得,此项符合题意故选:D.【点睛】本题考查了待定系数法求函数解析式、以及确定某点是否在函数上,依据题意求出反比例函数解析式是解题关键.2、C【分析】根据旋转的性质:对应点到旋转中心的距离相等,可知旋转中心一定在任何一对对应点所连线段的垂直平分线上,由图形可知,线段OC与BE的垂直平分线的交点即为所求.【详解】∵绕旋转中心顺时针旋转90°后得到,∴O、B的对应点分别是C、E,又∵线段OC的垂直平分线为y=1,线段BE是边长为2的正方形的对角线,其垂直平分线是另一条对角线所在的直线,由图形可知,线段OC与BE的垂直平分线的交点为(1,1).故选C.【点睛】本题考查了旋转的性质及垂直平分线的判定.3、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出S△ADE=,由平行线的性质可得,可得S△FGM=2,再利用S四边形DEGF=S△DEM-S△FGM,即可得到答案.【详解】解:如图,连接AM,交DE于点H,交BC于点P,

∵DE∥BC,

∴,∴∵的面积为∴S△ADE=×32=设AH=5a,HP=3a

∵沿着折叠

∴AH=HM=5a,S△ADE=S△DEM=

∴PM=2a,

∵DE∥BC

∴S△FGM=2∴S四边形DEGF=S△DEM-S△FGM=-2=

故选:B.【点睛】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键.4、B【分析】根据∠AOB=180°,∠AOC=100°,可得出∠BOC的度数,最后根据圆周角∠BDC与圆心角∠BOC所对的弧都是弧BC,即可求出∠BDC的度数.【详解】解:∵AB是⊙O直径,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所对的圆周角是∠BDC,圆心角是∠BOC,∴;故答案选B.【点睛】本题考查同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半,在做题时遇到已知圆心角,求圆周角的度数,可以通过计算,得出相应的圆心角的度数,即可得出圆周角的度数.5、A【解析】必然事件就是一定会发生的事件,依据定义即可解决【详解】A.水涨船高是必然事件,故正确;B.水中捞月,是不可能事件,故错误;C.一箭双雕是随机事件,故错误D.拔苗助长是不可能事件,故错误故选:A【点睛】此题考查随机事件,难度不大6、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:

∵共有9种等可能的结果,小华获胜的情况数是3种,

∴小华获胜的概率是:=.

故选:A.【点睛】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.7、C【分析】根据反比例函数的定义可得|a|-2≠0,可解得.【详解】根据反比例函数的定义可得|a|-2≠0,可解得a≠±2.故选C.【点睛】本题考核知识点:反比例函数定义.解题关键点:理解反比例函数定义.8、B【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线与半径为5的相离,∴圆心与直线的距离满足:.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.9、A【分析】首先利用a和b表示出AC和CQ的长,则四边形ACQE的面积即可利用a、b表示,然后根据函数的性质判断.【详解】解:AC=a−2,CQ=b,则S四边形ACQE=AC•CQ=(a−2)b=ab−2b.∵、在函数的图象上,∴ab=k=10(常数).∴S四边形ACQE=AC•CQ=10−2b,∵当a>2时,b随a的增大而减小,∴S四边形ACQE=10−2b随a的增大而增大.故选:A.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用b表示出四边形ACQE的面积是关键.10、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于的一元一次方程,解方程即可得出结论.【详解】解:∵方程有两个相等的实数根,∴,解得:.故选A.【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于的一元一次方程是解题的关键.11、A【详解】A.y=x2,是二次函数,正确;B.y=,被开方数含自变量,不是二次函数,错误;C.y=,分母中含自变量,不是二次函数,错误;D.y=ax2+bx+c,a=0时,,不是二次函数,错误.故选A.考点:二次函数的定义.12、B【分析】作出图形,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF可得四边形OECF是正方形,根据正方形的四条边都相等求出CE、CF,根据切线长定理可得AD=AF,BD=BE,从而得到AF+BE=AB,再根据三角形的周长的定义解答即可.【详解】解:如图,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF,∵∠C=90°,∴四边形OECF是正方形,∴CE=CF=1,由切线长定理得,AD=AF,BD=BE,∴AF+BE=AD+BD=AB=5,∴三角形的周长=5+5+1+1=1.故选:B【点睛】本题考查了三角形的内切圆与内心,切线长定理,作辅助线构造出正方形是解题的关键,难点在于将三角形的三边分成若干条小的线段,作出图形更形象直观.二、填空题(每题4分,共24分)13、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CD⊥AB,根据垂径定理的推理和垂径定理得到CD必过圆心0,即点O、D、C共线,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【详解】解:连接OA、如图,设⊙O的半径为R,

∵CD为水深,即C点为弧AB的中点,CD⊥AB,∴CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,

在Rt△OAD中,OA=50,OD=50-x,AD=40,

∵OD2+AD2=OA2,

∴(50-x)2+402=502,解得x=1,

即水深CD约为为1.

故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.14、【分析】先去分母,然后移项合并,即可得到答案.【详解】解:∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了解二元一次方程,解题的关键是掌握解二元一次方程的方法.15、9【解析】连接BF,过B作BO⊥AC于O,过点F作FM⊥AC于M.Rt△ABC中,AB=3,BC=6,.∵∠CAB=∠BAC,∠AOB=∠ABC,∴△AOB∽△ABC,,.∵EF=BG=2BE=2GF,BC=2AB,∴Rt△BGF和Rt△ABC中,,∴Rt△BGF∽Rt△ABC,∴∠FBG=∠ACB,∴AC∥BF,∴S△AFC=AC×FM=9.【点睛】△ACF中,AC的长度不变,所以以AC为底边求面积.因为两矩形相似,所以易证AC∥BF,从而△ACF的高可用BO表示.在△ABC中求BO的长度,即可计算△ACF的面积.16、【分析】根据题意把点代入,反比例函数的解析式即可求出k值进而得出答案.【详解】解:设反比例函数的解析式为:,把点代入得,所以该反比例函数的解析式为:.故答案为:.【点睛】本题考查反比例函数的解析式,根据题意将点代入并求出k值是解题的关键.17、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.18、【分析】由l1∥l2,根据根据平行线分线段成比例定理可得FG=AC;由l2∥l3,根据根据平行线分线段成比例定理可得==.【详解】∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l2∥l3,∴==,∴==,故答案为.【点睛】本题考查了平行线分线段成比例定理,掌握平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例是解题的关键.三、解答题(共78分)19、(﹣1,9)【分析】先写出A、B点的坐标,然后利用交点式写出抛物线解析式,再利用配方法得到抛物线的顶点坐标.【详解】解:∵OA=2OB=1,∴B(2,0),A(﹣1,0),∴抛物线解析式为y=﹣(x+1)(x﹣2),即y=﹣x2﹣2x+8,∵y=﹣(x+1)2+9,∴抛物线的顶点坐标为(﹣1,9).【点睛】本题考查了二次函数的解析式,解决本题的关键是正确理解题意,能够将二次函数一般式转化为交点式.20、(1)成立,理由见解析;(2);(3)【分析】(1)连接AD、BC,得到∠D=∠B,可证△PAD∽△PCB,即可求解;(2)根据(1)中的结论即可求解;(3)连接OC,根据,PC=,PA=1求出PB=3,AO=CO=1,PO=2利用,得到AOC为等边三角形,再分别求出,即可求解.【详解】解:(1)成立理由如下:如图,连接AD、BC则∠D=∠B∵∠P=∠P∴△PAD∽△PCB∴=∴PA·PB=PC·PD(2)当PD与⊙O相切于点C时,PC=PD,由(1)得PA·PB=PC·PD∴(3)如图,连接OC,PC=,PA=1PB=3,AO=CO=1,PO=2PC与⊙O相切于点CPCO为直角三角形,AOC为等边三角形====【点睛】此题主要考查圆内综合问题,解题的关键是熟知相似三角形的判定与性质、切线的性质及扇形面积的求解公式.21、(1)详见解析;(2)1.【分析】(1)先根据正方形的性质、直角三角形的性质得出,再加上一组直角相等,根据相似三角形的判定定理即可得证;(2)先根据正方形的性质、中点的性质求出AE的长,再根据勾股定理求出BE的长,最后根据相似三角形的性质、线段的和差即可得.【详解】(1)∵四边形ABCD为正方形,且;(2)∵四边形ABCD为正方形,点E为AD的中点在中,由(1)知,,即故的长为1.【点睛】本题考查了正方形的性质、勾股定理、相似三角形的判定定理与性质等知识点,较难的是题(2),由题(1)的结论联系到利用相似三角形的性质是解题关键.22、(1)80人(2)见解析(3)375【分析】(1)根据条形统计图和扇形统计图可知,选择文学鉴赏的学生16人,占总体的20%,从而可以求得调查的学生总人数;(2)根据3D打印的百分比和(1)中求得的调查的学生数,可以求得选择3D打印的有多少人,进而可以求得选择数学思维的多少人,从而可以将条形统计图补充完整;(3)根据调查的选择红船课程的学生所占的百分比,即可估算出全校选择体育类的学生人数.【详解】解:(1)16÷20%=80人;(2)如图所示;(3)=375(人).【点睛】本题考查了条形统计图、样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23、(1);(2)见解析;(3)4或﹣5+或﹣3+【分析】(1)证明△ADB∽△ABC,可得,由此即可解决问题.(2)想办法证明∠BEA=∠EFC,∠DBC=∠C即可解决问题.(3)分三种情形构建方程组解决问题即可.【详解】(1)∵AB=8,AC=12,又∵AB2=AD•AC∴∵AB2=AD•AC,∴,又∵∠BAC是公共角∴△ADB∽△ABC,∴∴=∴.(2)∵AC=12,,∴,∴BD=CD,∴∠DBC=∠C,∵△ADB∽△ABC∴∠ABD=∠C,∴∠ABD=∠DBC,∵∠BEF=∠C+∠EFC,即∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE.(3)如图中,过点A作AH∥BC,交BD的延长线于点H,设BE=x,CF=y,∵AH∥BC,∴====,∵BD=CD=,AH=8,∴AD=DH=,∴BH=12,∵AH∥BC,∴=,∴=,∴BG=,∵∠BEF=∠C+∠EFC,∴∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE,∴=,∴=,∴y=;当△GEF是等腰三角形时,存在以下三种情况:①若GE=GF,如图中,则∠GEF=∠GFE=∠C=∠DBC,∴△GEF∽△DBC,∵BC=10,DB=DC=,∴==,又∵△BEG∽△CFE,∴==,即=,又∵y=,∴x=BE=4;②若EG=EF,如图中,则△BEG与△CFE全等,∴BE=CF,即x=y,又∵y=,∴x=BE=﹣5+;③若FG=FE,如图中,则同理可得==,由△BEG∽△CFE,可得==,即=,又∵y=,∴x=BE=﹣3+.【点睛】此题主要考查等腰三角形的性质以及相似三角形的综合运用,解题关键是构建方程组进行求解.24、(1)20%;(2)能.【分析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论