河南省安阳市内黄县2022年九年级数学第一学期期末经典模拟试题含解析_第1页
河南省安阳市内黄县2022年九年级数学第一学期期末经典模拟试题含解析_第2页
河南省安阳市内黄县2022年九年级数学第一学期期末经典模拟试题含解析_第3页
河南省安阳市内黄县2022年九年级数学第一学期期末经典模拟试题含解析_第4页
河南省安阳市内黄县2022年九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55° B.70° C.110° D.125°2.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A. B. C. D.3.点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是()A. B. C. D.4.如图,内接于⊙,是⊙的直径,,点是弧上一点,连接,则的度数是()A.50° B.45° C.40° D.35°5.如图,已知,那么下列结论正确的是()A. B. C. D.6.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定7.如图,二次函数y=ax1+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①1a+b=0;②4a﹣1b+c<0;③b1﹣4ac>0;④当y<0时,x<﹣1或x>1.其中正确的有()A.4个 B.3个 C.1个 D.1个8.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm9.-4的相反数是()A. B. C.4 D.-410.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BAD为()A.40° B.50° C.60° D.70°11.在△ABC中,∠C=90°,tanA=,那么sinA的值是()A. B. C. D.12.如图,小颖周末到图书馆走到十字路口处,记不清前面哪条路通往图书馆,那么她能一次选对路的概率是()A. B. C. D.0二、填空题(每题4分,共24分)13.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作一个圆锥的侧面和底面,则的长为__________.

14.对于实数,定义运算“◎”如下:◎.若◎,则_____.15.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.16.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.17.如图,在网格中,小正方形的边长均为1,点,,都在格点上,则______.18.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B=_____°.三、解答题(共78分)19.(8分)已知,二次函数(m,n为常数且m≠0)(1)若n=0,请判断该函数的图像与x轴的交点个数,并说明理由;(2)若点A(n+5,n)在该函数图像上,试探索m,n满足的条件;(3)若点(2,p),(3,q),(4,r)均在该函数图像上,且p<q<r,求m的取值范围.20.(8分)一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.21.(8分)先化简,再求值:,其中x是方程的根.22.(10分)定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.23.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由改为,已知原传送带长为米.(1)求新传送带的长度;(2)如果需要在货物着地点的左侧留出2米的通道,试判断距离点5米的货物是否需要挪走,并说明理由.(参考数据:,.)24.(10分)(定义)在平面直角坐标系中,对于函数图象的横宽、纵高给出如下定义:当自变量x在范围内时,函数值y满足.那么我们称b-a为这段函数图象的横宽,称d-c为这段函数图象的纵高.纵高与横宽的比值记为k即:.(示例)如图1,当时;函数值y满足,那么该段函数图象的横宽为2-(-1)=1,纵高为4-1=1.则.(应用)(1)当时,函数的图象横宽为,纵高为;(2)已知反比例函数,当点M(1,4)和点N在该函数图象上,且MN段函数图象的纵高为2时,求k的值.(1)已知二次函数的图象与x轴交于A点,B点.①若m=1,是否存在这样的抛物线段,当()时,函数值满足若存在,请求出这段函数图象的k值;若不存在,请说明理由.②如图2,若点P在直线y=x上运动,以点P为圆心,为半径作圆,当AB段函数图象的k=1时,抛物线顶点恰好落在上,请直接写出此时点P的坐标.25.(12分)如图,在平面直角坐标系中,抛物线的图象与x轴交于,B两点,与y轴交于点,对称轴与x轴交于点H.(1)求抛物线的函数表达式(2)直线与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若的面积为,求点P,Q的坐标.(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标不存在,请说明理由.26.如图,△ABC中,AC=BC,CD⊥AB于点D,四边形DBCE是平行四边形.求证:四边形ADCE是矩形.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB=110°,再根据切线的性质以及四边形的内角和定理即可求解.【详解】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【点睛】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.2、C【详解】画树状图得:

∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,

∴两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.3、D【解析】试题分析:∵,∴对称轴为x=1,P2(3,),P3(5,)在对称轴的右侧,y随x的增大而减小,∵3<5,∴,根据二次函数图象的对称性可知,P1(﹣1,)与(3,)关于对称轴对称,故,故选D.考点:二次函数图象上点的坐标特征.4、A【分析】根据直径所对的圆周角是直角可知∠ABC=90°,计算出∠BAC的度数,再根据同弧所对的圆周角相等即可得出∠D的度数.【详解】解:∵是⊙的直径,∴∠ABC=90°,又∵,∴∠BAC=90°-40°=50°,又∵∠BAC与所对的弧相等,∴∠D=∠BAC=50°,故答案为A.【点睛】本题考查了直径所对的圆周角是直角、同弧所对圆周角相等等知识点,解题的关键是熟知直径所对的圆周角是直角及同弧所对圆周角相等.5、A【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.6、A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.7、B【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】∵二次函数y=ax1+bx+c(a≠0)的对称轴为x=1,∴﹣=1,得1a+b=0,故①正确;当x=﹣1时,y=4a﹣1b+c<0,故②正确;该函数图象与x轴有两个交点,则b1﹣4ac>0,故③正确;∵二次函数y=ax1+bx+c(a≠0)的对称轴为x=1,点B坐标为(﹣1,0),∴点A(3,0),∴当y<0时,x<﹣1或x>3,故④错误;故选B.【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,

∴OD=2

∴点D所转过的路径长==2π.

故选:C.【点睛】本题主要考查了弧长公式:.9、C【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.10、B【分析】连接BD,根据直径所对的圆周角是直角可得∠ADB的度数,然后在根据同弧所对的圆周角相等即可解决问题.【详解】解:如图,连接BD.∵AB是直径,∴∠ADB=90°,∵∠B=∠C=40°,∴∠DAB=90°﹣40°=50°,故选:B.【点睛】本题考查的是直径所对的圆周角是直角与同弧所对的圆周角相等的知识,能够连接BD是解题的关键.11、C【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tanA==,BC=x,AC=3x,由勾股定理,得AB=x,sinA==,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.12、B【分析】在通往图书馆的路口有3条路,一次只能选一条路,则答案可解.【详解】在通往图书馆的路口有3条路,一次只能选一条路,她能一次选对路的概率是故选:B.【点睛】本题主要考查随机事件的概念,掌握随机事件概率的求法是解题的关键.二、填空题(每题4分,共24分)13、cm.【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【详解】解:设AB=xcm,则DE=(6-x)cm,

根据题意,得解得x=1.

故选:1cm.【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、-3或4【分析】利用新定义得到,整理得到,然后利用因式分解法解方程.【详解】根据题意得,,,,或,所以.故答案为或.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.15、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋转角的大小为2α.16、55°【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°-35°=55°.【详解】如图,∵CD为斜边AB的中线∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°则∠BCD=90°-35°=55°故填:55°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.17、【分析】连接AC,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC、AB,根据正切的定义计算即可.【详解】连接AC,由网格特点和正方形的性质可知,∠BAC=90°,根据勾股定理得,AC=,AB=2,则tan∠ABC=,故答案为:.【点睛】本题考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.18、35°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,根据三角形内角与外角的关系可得∠B的大小.【详解】∵同弧所对的圆周角相等求得∠D=∠A=42°,且∠APD=77°是三角形PBD外角,∴∠B=∠APD−∠D=35°,故答案为:35°.【点睛】此题考查圆周角定理及其推论,解题关键明确三角形内角与外角的关系.三、解答题(共78分)19、(1)函数图像与轴有两个交点;(2)或;(3)且m≠0【分析】(1)先确定△=b2-4ac>0,可得函数图象与轴有两个交点;(2)将点A代入中即可得m,n应满足的关系;(3)根据二次函数的增减性进行分类讨论.【详解】解:(1)当时,原函数为该函数图像与轴有两个交点(2)将代入原函数得:或(3)对称轴①当2,3,4在对称轴的同一侧时,且m≠0且m≠0②当2,3,4在对称轴两侧时,综上:且m≠0【点睛】本题考查二次函数图象的特征,利用图象特征与字母系数的关系,观察图象即数形结合是解答此题的关键.20、(1)随机(2)【解析】试题分析:(1)直接利用随机事件的定义分析得出答案;(2)利用树状图法画出图象,进而利用概率公式求出答案.试题解析:(1)“其中有1个球是黑球”是随机事件;故答案为随机;(2)如图所示:,一共有20种可能,2个球颜色相同的有8种,故2个球颜色相同的概率为:=.考点:列表法与树状图法.21、见解析【解析】试题分析:先将原式按分式的相关运算法则化简,再解方程求得x的值,最后将使原分式有意义的x的值代入化简后的式子计算即可.试题解析:原式.解方程得.当时,原式;当时,原式无意义.点睛:求分式的值时,字母的取值需确保原分式有意义,本题中,当时,原分式无意义,此时不能将代入化简所得的分式中进行计算.22、(1)四边形;(2)详见解析;(3)【分析】(1)根据三角形相似的判定定理,得∆ABC~∆EAC,进而即可得到答案;(2)由旋转的性质得,,,结合,得,进而即可得到结论;(3)过点作于,得,根据三角形的面积得,结合∽,即可得到答案.【详解】(1)由题意得:,∴,∴∆ABC~∆EAC,∴被分割成的“友好四边形”的是:四边形,故答案是:四边形;(2)根据旋转的性质得,,,∵,∴,∴,∴∽,∴四边形是“友好四边形”;(3)过点作于,∴在中,,∵的面积为,∴,∴,∵四边形是被分割成的“友好四边形”,且,∴∽,∴,∴,∴.【点睛】本题主要考查相似三角形的判定和性质定理以及三角函数的定义,掌握三角形相似的判定和性质,是解题的关键.23、(1)新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,理由见解析【分析】(1)根据正弦的定义求出AD,根据直角三角形30度角的性质求出AC;

(2)根据正切函数的定义求出CD,求出PC的长度,比较大小得到答案.【详解】(1)在Rt△ABD中,∠ADB=90,,sin∠ABD=,∴,在Rt△ACD中,∠ADC=90°,∠ACD=30°,

∴AC=2AD=8,

答:新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,

理由如下:在Rt△ABD中,∠ADB=90,∠ABD=45°,

∴BD=AD=4,在Rt△ACD中,∠ADC=90,∠ACD=30°,AC=8,∴(米),∴CB=CD-BD≈2.8,

PC=PB-CB≈2.2,

∵2.2>2,

∴距离B点5米的货物不需要挪走.【点睛】本题实际考查的是解直角三角形的应用,在两个直角三角形拥有公共边的情况下,先求出这条公共边是解答此类题目的关键.24、(1)2,4;(2),2;(1)①存在,k=1;②或或【分析】(1)当时,函数的函数值y满足从而可以得出横宽和纵高;(2)由题中MN段函数图象的纵高为2,进而进行分类讨论N的y值为2以及6的情况,再根据题中对k值定义的公式进行计算即可;(1)①先求出函数的解析式及对称轴及最大值,根据函数值满足确定b的取值范围,并判断此时函数的增减性,确定两个端点的坐标,代入函数解析式求解即可;②先求出A、B的坐标及顶点坐标,根据k=1求出m的值,分两种情况讨论即可.【详解】(1)当时,函数的函数值y满足,从而可以得出横宽为,纵高为故答案为:2,4;(2)将M(1,4)代入,得n=12,纵高为2,令y=2,得x=6;令y=6,x=2,,.(1)①存在,,解析式可化为,当x=2时,y最大值为4,,解得,当时,图像在对称轴左侧,y随x的增大而增大,当x=a时,y=2a;当x=b时,y=1b,将分别代入函数解析式,解得(舍),(舍),,②,,,理由是:A(0,0),B(4,0),顶点K(2,4m),AB段函数图像的k=1,,m=1或-1,二次函数为或,过顶点K和P点分别作x轴、y轴的垂线,交点为H.i)若二次函数为,如图1,设P的坐标为(x,x),则KH=,PH=,在中,,即解得,ii)若二次函数为,如图2,设P的坐标为(x,x),则,在中,,解得x=-1,【点睛】本题考查的是新定义问题,是中考热门题型,解题关键在于结合抛物线的图像性质、直角三角形的勾股定理以及题中对于k值的定义进行求解.25、(1);(2);(3)【分析】(1)利用对称轴和A点坐标可得出,再设,代入C点坐标,求出a的值,即可得到抛物线解析式;(2)求C点和E点坐标可得出CE的长,再联立直线与抛物线解析式,得到,设点P,Q的横坐标分别为,利用根与系数的关系求出,再根据的面积可求出k的值,将k的值代入方程求出,即可得到P、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论