![河北省沧州泊头市第四中学2022-2023学年数学九年级第一学期期末调研试题含解析_第1页](http://file4.renrendoc.com/view2/M03/21/02/wKhkFmaYWNqAe8HIAAHKIRmL8No559.jpg)
![河北省沧州泊头市第四中学2022-2023学年数学九年级第一学期期末调研试题含解析_第2页](http://file4.renrendoc.com/view2/M03/21/02/wKhkFmaYWNqAe8HIAAHKIRmL8No5592.jpg)
![河北省沧州泊头市第四中学2022-2023学年数学九年级第一学期期末调研试题含解析_第3页](http://file4.renrendoc.com/view2/M03/21/02/wKhkFmaYWNqAe8HIAAHKIRmL8No5593.jpg)
![河北省沧州泊头市第四中学2022-2023学年数学九年级第一学期期末调研试题含解析_第4页](http://file4.renrendoc.com/view2/M03/21/02/wKhkFmaYWNqAe8HIAAHKIRmL8No5594.jpg)
![河北省沧州泊头市第四中学2022-2023学年数学九年级第一学期期末调研试题含解析_第5页](http://file4.renrendoc.com/view2/M03/21/02/wKhkFmaYWNqAe8HIAAHKIRmL8No5595.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知二次函数y=kx2-7x-7的图象与x轴没有交点,则k的取值范围为()A.k> B.k≥且k≠0 C.k< D.k>且k≠02.如图,数轴上的点,,,表示的数分别为,,,,从,,,四点中任意取两点,所取两点之间的距离为的概率是()A. B. C. D.3.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.4.如图,这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,则这个花坛的周长(实线部分)为()A.4π米 B.π米 C.3π米 D.2π米5.在一个不透明的口袋中装有个完全相同的小球,把它们分别标号为,从中随机摸出一个小球,其标号小于的概率为()A. B. C. D.6.在双曲线的每一分支上,y都随x的增大而增大,则k的值可以是()A.2 B.3 C.0 D.17.如图,是函数的图像上关于原点对称的任意两点,轴,轴,的面积记为,则()A. B. C. D.8.如图,抛物线的图像交轴于点和点,交轴负半轴于点,且,下列结论错误的是()A. B. C. D.9.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.10.对于不为零的两个实数a,b,如果规定a★b,那么函数的图象大致是()A. B. C. D.11.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为1.其中,正确结论的个数为()A.1个 B.2个 C.1个 D.4个12.下列银行标志图片中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,转盘中个扇形的面积都相等.任意转动转盘次,当转盘停止转动时,指针落在阴影部分的概率为________.14.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为__15.如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为___;16.化简:-(sin60°﹣1)0﹣2cos30°=________________.17.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为_____.18.如图,点,分别在线段,上,若,,,,则的长为________.三、解答题(共78分)19.(8分)在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=8,DB=2,求CD的长20.(8分)解方程:(1)x2﹣2x﹣1=0(2)2(x﹣3)=3x(x﹣3)21.(8分)如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标_____________;(2)若l经过点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l经过正方形ABCD的两个顶点,直接写出所有符合条件的c的值.22.(10分)在平面直角坐标系中,抛物线y=﹣4x2﹣8mx﹣m2+2m的顶点p.(1)点p的坐标为(含m的式子表示)(2)当﹣1≤x≤1时,y的最大值为5,则m的值为多少;(3)若抛物线与x轴(不包括x轴上的点)所围成的封闭区域只含有1个整数点,求m的取值范围.23.(10分)网络比网络的传输速度快10倍以上,因此人们对产品充满期待.华为集团计划2020年元月开始销售一款产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第个月(为正整数)销售价格为元/台,与满足如图所示的一次函数关系:且第个月的销售数量(万台)与的关系为.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除元推广费用,当时销售利润最大值为22500万元时,求的值.24.(10分)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.25.(12分)周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.35m,BD=7m.测量示意图如图所示.请根据相关测量信息,求河宽AB.26.已知反比例函数y=(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线Cl,将Cl向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次函数图像与x轴没有交点说明,建立一个关于k的不等式,解不等式即可.【详解】∵二次函数的图象与x轴无交点,∴即解得故选C.【点睛】本题主要考查一元二次方程根的判别式和二次函数图像与x轴交点个数的关系,掌握根的判别式是解题的关键.2、D【分析】利用树状图求出可能结果即可解答.【详解】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所取两点之间的距离为2的概率==.故选D.【点睛】本题考查画树状图或列表法求概率,掌握画树状图的方法是解题关键.3、A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.4、A【分析】根据弧长公式解答即可.【详解】解:如图所示:∵这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,∴OA=OC=O'A=OO'=O'C=1,∴∠AOC=120°,∠AOB=60°,∴这个花坛的周长=,故选:A.【点睛】本题考查了圆的弧长公式,找到弧所对圆心角度数是解题的关键5、C【分析】直接利用概率公式求解即可求得答案.【详解】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,
其中小于的3个,∴从中随机摸出一个小球,其标号小于4的概率为:故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6、C【分析】根据反比例函数的性质:当k-1<0时,在每一个象限内,函数值y随着自变量x的增大而增大作答.【详解】∵在双曲线的每一条分支上,y都随x的增大而增大,∴k-1<0,∴k<1,故选:C.【点睛】本题考查了反比例函数的性质.对于反比例函数,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.7、A【分析】根据反比例函数图象上的点A、B关于原点对称,可以写出它们的坐标,则△ABC的面积即可求得.【详解】解:设A(x₁,y₁),根据题意得B(-x₁,-y₁),BC=2x₁,AC=2y₁∵A在函数的图像上∴x₁y₁=1
故选:
A【点睛】本题考查的是反比例函数的性质.8、B【分析】A根据对称轴的位置即可判断A正确;图象开口方向,与y轴的交点位置及对称轴位置可得,,即可判断B错误;把点坐标代入抛物线的解析式即可判断C;把B点坐标代入抛物线的解析式即可判断D;【详解】解:观察图象可知对称性,故结论A正确,由图象可知,,,,故结论B错误;抛物线经过,,故结论C正确,,,点坐标为,,,,故结论D正确;故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右.(简称:左同右异);常数项决定抛物线与轴交点:抛物线与轴交于;抛物线与轴交点个数由△决定:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.9、D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.10、C【分析】先根据所给新定义运算求出分段函数解析式,再根据函数解析式来判断函数图象即可.【详解】解:∵a★b,∴∴当x>2时,函数图象在第一象限且自变量的值不等于2,当x≤2时,是反比例函数,函数图象在二、四象限.故应选C.【点睛】本题考查了分段函数及其图象,理解所给定义求出分段函数解析式是解题的关键.11、D【解析】本题考察二次函数的基本性质,一元二次方程根的判别式等知识点.【详解】解:∵,∴抛物线的对称轴<0,∴该抛物线的对称轴在轴左侧,故①正确;∵抛物线与轴最多有一个交点,∴∴关于的方程中∴关于的方程无实数根,故②正确;∵抛物线与轴最多有一个交点,∴当时,≥0正确,故③正确;当时,,故④正确.故选D.【点睛】本题的解题关键是熟悉函数的系数之间的关系,二次函数和一元二次方程的关系,难点是第四问的证明,要考虑到不等式的转化.12、B【解析】由题意根据轴对称图形与中心对称图形的概念进行依次判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每题4分,共24分)13、【分析】根据古典概型的概率的求法,求指针落在阴影部分的概率.【详解】一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件包含其中的中结果,那么事件发生的概率为.图中,因为6个扇形的面积都相等,阴影部分的有3个扇形,所以指针落在阴影部分的概率是.【点睛】本题考查古典概型的概率的求法.14、1【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=-2(x-1)2+1.根据二次函数的性质来求最值即可.【详解】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+1.∴当x=1时,C最大值=1.即:四边形OAPB周长的最大值为1.【点睛】本题主要考查二次函数的最值以及二次函数图象上点的坐标特征.设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+1.最后根据根据二次函数的性质来求最值是关键.15、【解析】构造K字型相似模型,直接利用相似三角形的判定与性质得出,而由反比例性质可知S△AOD==3,即可得出答案.【详解】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,
∵∠BOA=90°,
∴∠BOC+∠AOD=90°,
∵∠AOD+∠OAD=90°,
∴∠BOC=∠OAD,
又∵∠BCO=∠ADO=90°,
∴△BCO∽△ODA,
∴,
∴,∴S△BCO=S△AOD
∵S△AOD===3,∴S△BCO=×3=1∵经过点B的反比例函数图象在第二象限,
故反比例函数解析式为:y=.
故答案为.【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正确得出S△BOC=1是解题关键.16、-1【分析】根据实数的性质即可化简求解.【详解】-(sin60°﹣1)0﹣2cos30°=-1-2×=-1-=-1故答案为:-1.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊三角函数值的求解.17、【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.18、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:,,即,解得,,,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.三、解答题(共78分)19、CD=1【分析】利用相似三角形的判定和性质,先求出△ADC∽△CDB,再根据对应边成比例,即可求出CD的值.【详解】∵CD⊥AB,∴∠ADC=∠CDB=90°,∴∠ACD+∠A=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴,∴=AD•BD=82=16,∴CD=1.【点睛】此题运用了相似三角形的判定和性质,两个角对应相等,则两三角形相似.20、(1),(2)或【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【详解】(1)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,,∴;(2),移项得:,因式分解得:=0,∴或,解得:或.【点睛】本题主要考查了解一元二次方程-配方法和因式分解法,根据方程的不同形式,选择合适的方法是解题的关键.21、(1)D点的坐标为(1,1);(1)y=﹣x1+3x﹣1;(3)1≤MN≤;(4)所有符合条件的c的值为﹣1,1,﹣1.【分析】(1)根据正方形的性质,可得D点的坐标;(1)根据待定系数法,可得函数解析式;(3)根据顶点横坐标纵坐标越大,与x轴交点的线段越长,根据顶点横坐标纵坐标越小,与x轴交点的线段越短,可得答案;(4)根据待定系数法,可得c的值,要分类讨论,以防遗漏.【详解】解:(1)由正方形ABCD内或边上,已知点A(1,1),B(1,1),C(1,1),得D点的横坐标等于C点的横坐标,即D点的横坐标为1,D点的纵坐标等于A点的纵坐标,即D点的纵坐标为1,D点的坐标为(1,1);(1)把B(1,1)、C(1,1)代入解析式可得:,解得:所以二次函数的解析式为y=﹣x1+3x﹣1;(3)由此时顶点E的坐标为(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=1﹣,x1=1+,即N(1+,0),M(1﹣,0),所以MN=1+﹣(1﹣)=1.点E的坐标为B(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=0,x1=1,即N(1,0),M(0,0),所以MN=1﹣0=1.点E在线段AD上时,MN最大,点E在线段BC上时,MN最小;当顶点E在正方形ABCD内或边上时,1≤MN≤1;(4)当l经过点B,C时,二次函数的解析式为y=﹣x1+3x﹣1,c=﹣1;当l经过点A、D时,E点不在正方形ABCD内或边上,故排除;当l经过点B、D时,,解得:,即c=﹣1;当l经过点A、C时,,解得,即c=1;综上所述:l经过正方形ABCD的两个顶点,所有符合条件的c的值为﹣1,1,﹣1.【点睛】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用正方形的性质求顶点坐标是解题的关键;利用顶点横坐标纵坐标越大,与x轴交点的线段越长得出顶点为D时MN最长,顶点为B时MN最短是解题的关键.22、(1);(2)m=1或9或﹣3;(3)或【分析】(1)函数的对称为:x=﹣m,顶点p的坐标为:(﹣m,3m2+2m),即可求解;(2)分m≤﹣1、m≥1、﹣1<m<1,三种情况,分别求解即可;(3)由题意得:3m2+2m≤1,即可求解.【详解】解:(1)函数的对称为:x=﹣m,顶点p的坐标为:(﹣m,3m2+2m),故答案为:(﹣m,3m2+2m);(2)①当m≤﹣1时,x=1时,y=5,即5=﹣4﹣8m﹣m2+2m,解得:m=﹣3;②当m≥1时,x=﹣1,y=5,解得:m=1或9;③﹣1<m<1时,同理可得:m=1或﹣(舍去);故m=1或9或﹣3;(3)函数的表达式为:y=﹣4x2﹣8mx﹣m2+2m,当x=1时,y=﹣m2﹣6m﹣4,则1≤y<2,且函数对称轴在y轴右侧,则1≤﹣m2﹣6m﹣4<2,解得:﹣3+≤m≤﹣1;当对称轴在y轴左侧时,1≤y<2,当x=﹣1时,y=﹣m2+10m﹣4,则1≤y<2,即1≤﹣m2+10m﹣4<2,解得:5﹣2≤m<5﹣;综上,﹣3+≤m≤﹣1或5﹣2≤m<5﹣.【点睛】本题考查二次函数的性质,熟练掌握性质是解题的关键,分情况讨论,注意不要漏掉.23、(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4).【解析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b求k,b确定表达式,求当x=6时的y值即可;(2)求销售额w与x之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,,解得,,∴y=-500x+7500,当x=6时,y=-500×6+7500=4500元;(2)设销售额为z元,z=yp=(-500x+7500)(x+1)=-500x2+7000x+7500=-500(x-7)2+32000,∵z与x成二次函数,a=-500<0,开口向下,∴当x=7时,z有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z与x的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x1=10,x2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W=-500x2+7000x+7500-m(x+1)=-500x2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m)×6+7500-m=22500,解得,m=,此时7月份的总利润为-500×72+(7000-)×7+7500-≈17714<22500,此时8月份的总利润为-500×82+(7000-)×8+7500-≈19929<22500,∴当m=时,6月份利润最大,且最大值为22500万元.第二种情况:当x=7时,-500×72+(7000-m)×7+7500-m=22500,解得,m=1187.5,此时6月份的总利润为-500×62+(7000-1187.5)×6+7500-1187.5=231
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《点亮小灯泡》教学设计-2023-2024学年教科版小学科学四年级下册
- 大学生宿舍卖零食创业
- 校园打架斗殴安全防范与教育
- 电商平台的教育资源整合与运营
- 7 美丽的化学变化 教学设计-2023-2024学年科学六年级下册教科版
- Unit 7 Reading Plus教学设计 2024-2025学年人教版七年级英语上册
- 社交媒体时代的舆情监控与危机应对
- 6 生物的变异 教学设计-2024-2025学年科学六年级上册苏教版
- 《年月日》(教学设计)-2024-2025学年三年级上册数学西师大版
- 应用型高校改革的核心任务与重点领域
- 《煤矿安全规程》专家解读(详细版)
- 招聘面试流程sop
- 建筑公司工程财务报销制度(精选7篇)
- 工程设计方案定案表
- 最新2022年减肥食品市场现状与发展趋势预测
- 第一章-天气图基本分析方法课件
- 发展汉语初级综合1:第30课PPT课件[通用]
- 马工程西方经济学(第二版)教学课件-(4)
- 暖气管道安装施工计划
- 体育实习周记20篇
- 初二物理弹力知识要点及练习
评论
0/150
提交评论