江西省新余九中学2025届九上数学期末调研模拟试题含解析_第1页
江西省新余九中学2025届九上数学期末调研模拟试题含解析_第2页
江西省新余九中学2025届九上数学期末调研模拟试题含解析_第3页
江西省新余九中学2025届九上数学期末调研模拟试题含解析_第4页
江西省新余九中学2025届九上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省新余九中学2025届九上数学期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20° B.35° C.40° D.55°2.圆锥的底面半径为1,母线长为2,则这个圆锥的侧面积是()A. B. C. D.3.已知一元二次方程,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根4.已知点(﹣3,a),(3,b),(5,c)均在反比例函数y=的图象上,则有()A.a>b>c B.c>b>a C.c>a>b D.b>c>a5.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)6.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45° B.60° C.72° D.90°7.如图,在平面直角坐标系中,函数与的图像相交于,两点,过点作轴的平行线,交函数的图像于点,连接,交轴于点,则的面积为()A. B. C.2 D.8.在一个不透明的盒子里装有个黄色、个蓝色和个红色的小球,它们除颜色外其他都完全相同,将小球摇匀后随机摸出一个球,摸出的小球为红色的概率为()A. B. C. D.9.一组数据由五个正整数组成,中位数是3,且惟一众数是7,则这五个正整数的平均数是()A.4 B.5 C.6 D.810.如图,E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD与矩形EABF相似,AB=1,则矩形ABCD的面积是()A.4 B.2 C. D.11.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2) B.(2,2) C.(−2,2) D.(2,−2)12.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.在一个不透明的塑料袋中装有红色白色球共个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有________个.14.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_____.15.如图,⊙O与矩形ABCD的边AB、CD分别相交于点E、F、G、H,若AE+CH=6,则BG+DF为_________.16.若两个相似三角形的周长比是,则对应中线的比是________.17.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为____.18.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.三、解答题(共78分)19.(8分)超速行驶被称为“马路第一杀手”为了让驾驶员自觉遵守交通规则,湖浔大道公路检测中心在一事故多发地段安装了一个测速仪器,如图所示,已知检测点设在距离公路10米的A处,测得一辆汽车从B处行驶到C处所用时间为1.35秒.已知∠B=45°,∠C=30°.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为70km/h,那么这辆汽车是否超速?请说明理由.(参考数据;≈1.7,≈1.4)20.(8分)不透明的袋子中装有1个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、1.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.21.(8分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.22.(10分)已知关于的一元二次方程

有实根.(1)求的取值范围;(2)求该方程的根.23.(10分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.24.(10分)如图,在中,,,垂足分别为,与相交于点.(1)求证:;(2)当时,求的长.25.(12分)2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.26.综合与探究问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是,位置关系是.合作探究:(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】试题解析:∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,∵过点C的切线与边AD所在直线垂直于点M,∴∠MCA=∠ABC=55°,∠AMC=90°,∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC﹣∠AMC=35°,∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°.故选A.2、B【分析】根据题意得出圆锥的底面半径为1,母线长为2,直接利用圆锥侧面积公式求出即可.【详解】依题意知母线长为:2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故选:B.【点睛】此题主要考查了圆锥侧面面积的计算,对圆锥的侧面面积公式运用不熟练,易造成错误.3、A【详解】解:∵a=2,b=-5,c=3,∴△=b2-4ac=(-5)2-4×2×3=1>0,∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,熟记公式正确计算是解题关键,难度不大.4、D【分析】根据反比例函数系数k2+1大于0,得出函数的图象位于第一、三象限内,在各个象限内y随x的增大而减小,据此进行解答.【详解】解:∵反比例函数系数k2+1大于0,∴函数的图象位于第一、三象限内,在各个象限内y随x的增大而减小,∵﹣3<0,0<3<5,∴点(﹣3,a)位于第三象限内,点(3,b),(5,c)位于第一象限内,∴b>c>a.故选:D.【点睛】本题主要考查反比例函数的图象和性质,解答本题的关键是确定反比例函数的系数大于0,并熟练掌握反比例函数的性质,此题难度一般.5、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可.【详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C.【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.6、B【分析】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.

故选B.【点睛】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.7、B【分析】先确定A、B两点坐标,然后再确定点C坐标,从而可求△ABC的面积,再根据三角形中位线的性质可知答案.【详解】∵函数与的图像相交于,两点∴联立解得∴点A、B坐标分别是∵过点作轴的平行线,交函数的图像于点∴把代入到中得,解得∴点C的坐标为∴∵OA=OB,OE∥AC∴OE是△ABC的中位线∴故答案选B.【点睛】本题是一道综合题,考查了一次函数与反比例函数和三角形中位线性质,能够充分调动所学知识是解题的关键.8、D【分析】让红球的个数除以球的总个数即为所求的概率.【详解】解:∵盒子中一共有3+2+4=9个球,红色的球有4个∴摸出的小球为红色的概率为故选D【点睛】此题主要考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9、A【分析】根据题意,五个正整数中3是中位数,唯一众数是7,可以得知比3大的有2个数,比3小的有2个数,且7有2个,然后求出这五个数的平均数即可.【详解】由五个正整数知,中位数是3说明比3大的有2个数,比3小的有2个数,唯一众数是7,则7有2个,所以这五个正整数分别是1、2、3、7、7,计算平均数是(1+2+3+7+7)÷5=4,故选:A.【点睛】本题考查了数据的收集与处理,中位数,众数,平均数的概念以及应用,掌握数据的收集与处理是解题的关键.10、D【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故选:D.【点睛】此题主要考查相似多边形,解题的关键是根据相似的定义列出比例式进行求解.11、D【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),

则点B关于x轴的对称点C的坐标是(2,-2),故答案为D12、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为=.故选:A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、1【分析】设有红球有x个,利用频率约等于概率进行计算即可.【详解】设红球有x个,根据题意得:=20%,解得:x=1,即红色球的个数为1个,故答案为:1.【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.14、2【分析】设袋子中红球有x个,求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【详解】设袋子中红球有x个,根据题意,得:,解得:x=2,所以袋中红球有2个,故答案为2【点睛】此题考查概率公式的应用,解题关键在于求出摸到红球的频率15、6【分析】作EM⊥BC,HN⊥AD,易证得,继而证得,利用等量代换即可求得答案.【详解】过E作EM⊥BC于M,过H作HN⊥AD于N,如图,∵四边形ABCD为矩形,∴AD∥BC,∴,∴,∵四边形ABCD为矩形,且EM⊥BC,HN⊥AD,∴四边形ABME、EMHN、NHCD均为矩形,∴,AE=BM,EN=MH,ND=HC,在和中,∴(HL),∴,∴,故答案为:【点睛】本题考查了矩形的判定和性质、直角三角形的判定和性质、平行弦所夹的弧相等、等弧对等弦等知识,灵活运用等量代换是解题的关键.16、4:9【分析】相似三角形的面积之比等于相似比的平方.【详解】解:两个相似三角形的周长比是,∴两个相似三角形的相似比是,∴两个相似三角形对应中线的比是,故答案为.17、【分析】列表得出所有等可能的情况数,找出P坐标落在双曲线上的情况数,即可求出所求的概率.【详解】解:列表得:所有等可能的情况数有36种,其中P(x,y)落在双曲线y=上的情况有4种,则P==.故答案为【点睛】本题考查列表法与树状图法;反比例函数图象上点的坐标特征,掌握概率的求法是解题关键.18、1【分析】由正方形的面积公式可求解.【详解】解:∵AC=3,

∴正方形ABCD的面积=3×3×=1,

故答案为:1.【点睛】本题考查了正方形的性质,熟练运用正方形的性质是解题的关键.三、解答题(共78分)19、(1)BC=(10+10)m;(2)这辆汽车超速.理由见解析.【分析】(1)作AD⊥BC于D,则AD=10m,求出CD、BD即可解决问题;(2)求出汽车的速度,即可解决问题,注意统一单位.【详解】(1)如图作AD⊥BC于D,则AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°=,∴CD=AD=10m,∴BC=BD+DC=(10+10)m;(2)结论:这辆汽车超速.理由:∵BC=10+10≈27m,∴汽车速度==20m/s=72km/h,∵72km/h>70km/h,∴这辆汽车超速.【点睛】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.20、(1);(2).【解析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和为奇数的结果数,然后根据概率公式求解.【详解】(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为1,所以“两次取的球标号相同”的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21、(1)证明见解析;(2)①证明见解析;②;③1.【解析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【详解】(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG=BP,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1.【点睛】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.22、(1);(2)【分析】(1)根据根的判别式,列不等式求出k的取值范围即可.(2)用公式法解方程即可.【详解】(1)由一元二次方程有实数根,可以得出≥1,即(-2)2-4(k+1)≥1,解得:k≤1.(2),x==.【点睛】本题主要考查根的判别式以及公式法解一元二次方程的方法,熟记根的判别式以及一元二次方程解得公式是解题关键.23、(1)详见解析;(2)4;(3)【分析】(1)首先连接,通过半径和角平分线的性质进行等角转换,得出,进而得出,即可得证;(2)首先连接,得出,进而得出,再根据勾股定理得出DE;(3)首先连接,过点作,得出,再得,进而得出,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接∵∴∵平分∴∴∴∵∴又∵是的半径∴与相切(2)解:连接∵AB为直径∴∠ADB=90°∵∴∴∴∴中(3)连接,过点作于∵,DE⊥AE,AD=AD∴∴,DE=DG∴∴∴即:∴∴根据二次函数知识可知:当时,【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.24、(1)证明见解析;(2).【分析】(1)只要证明∠DBF=∠DAC,即可判断.

(2)利用相似三角形的性质即可解决问题.【详解】(1),,,,,;(2)由,可得,,,.【点睛】本题考查了锐角三角函数的应用,相似三角形的性质和判定,同角的余角相等,直角三角形两锐角互余等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题.25、(1)该地这两天《中国机长》票房的平均增长率为40%;(2)最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元【分析】(1)根据题意列出增长率的方程解出即可.(2)根据题意列出不等式组,解出a的正整数值,再根据方案判断即可.【详解】(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论