版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南长沙市广益中学2025届数学九上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式是()A. B.C. D.2.如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm3.如图,点A,B,C,D四个点均在⊙O上,∠A=70°,则∠C为()A.35° B.70° C.110° D.120°4.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<45.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米6.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.7.用配方法将二次函数化为的形式为()A. B.C. D.8.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y39.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标系逐渐增大时,△OAB的面积将会()A.逐渐变小 B.逐渐增大 C.不变 D.先增大后减小10.在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为,则这个袋子中蓝球的个数是()A.3个 B.4个 C.5个 D.12个11.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处 B.点C2处 C.点C3处 D.点C4处12.如图,周长为28的菱形中,对角线、交于点,为边中点,的长等于()A.3.5 B.4 C.7 D.14二、填空题(每题4分,共24分)13.如图,一段抛物线记为,它与轴的交点为,顶点为;将绕点旋转180°得到,交轴于点为,顶点为;将绕点旋转180°得到,交轴于点为,顶点为;……,如此进行下去,直至到,顶点为,则顶点的坐标为_________.14.为了估计一个不透明的袋子中白球的数量袋中只有白球,现将5个红球放进去这些球除颜色外均相同随机摸出一个球记下颜色后放回每次摸球前先将袋中的球摇匀,通过多次重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中白球的个数大约为______.15.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.16.若2是方程x2﹣2kx+3=0的一个根,则方程的另一根为______.17.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.18.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有_____人.三、解答题(共78分)19.(8分)如图1,已知中,,,,点、在上,点在外,边、与交于点、,交的延长线于点.(1)求证:;(2)当时,求的长;(3)设,的面积为,①求关于的函数关系式.②如图2,连接、,若的面积是的面积的1.5倍时,求的值.20.(8分)电影《我和我的祖国》在国庆档热播,预售票房成功破两亿,堪称热度最高的爱国电影,周老师打算从非常渴望观影的5名学生会干部(两男三女)中,抽取两人分别赠送一张的嘉宾观影卷,问抽到一男一女的概率是多少?(请你用树状图或者列表法分析)21.(8分)一元二次方程的一个根为,求的值及方程另一根.22.(10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.23.(10分)九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分,则成绩较为整齐的是哪个队?24.(10分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.25.(12分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:.求作:菱形,使菱形的顶点落在边上.26.先化简,再求值:(1+),其中,x=﹣1.
参考答案一、选择题(每题4分,共48分)1、D【分析】二次函数绕原点旋转,旋转后的抛物线顶点与原抛物线顶点关于原点中心对称,开口方向相反,将原解析式化为顶点式即可解答.【详解】把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式:故选:D【点睛】本题考查的是二次函数的旋转,关键是掌握旋转的规律,二次函数的旋转,平移等一般都要先化为顶点式.2、B【分析】由平行可得=,再由条件可求得=,代入可求得BC.【详解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故选:B.【点睛】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段成比例是解题的关键.3、C【分析】根据圆内接四边形的性质即可求出∠C.【详解】∵四边形ABCD是圆内接四边形,∴∠C=180°﹣∠A=110°,故选:C.【点睛】此题考查的是圆的内接四边形,掌握圆内接四边形的性质:对角互补,是解决此题的关键.4、C【解析】根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.6、B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.7、B【分析】加上一次项系数一半的平方凑成完全平方式,将一般式转化为顶点式即可.【详解】故选:B.【点睛】本题考查二次函数一般式到顶点式的转化,熟练掌握配方法是解题的关键.8、C【解析】将x的值代入函数解析式中求出函数值y即可判断.【详解】当x=-3时,y1=1,
当x=-1时,y2=3,
当x=1时,y3=-3,
∴y3<y1<y2
故选:C.【点睛】考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题.9、A【解析】试题分析:根据反比例函数的性质结合图形易知△OAB的高逐渐减小,再结合三角形的面积公式即可判断.要知△OAB的面积的变化,需考虑B点的坐标变化,因为A点是一定点,所以OA(底)的长度一定,而B是反比例函数图象上的一点,当它的横坐标不断增大时,根据反比例函数的性质可知,函数值y随自变量x的增大而减小,即△OAB的高逐渐减小,故选A.考点:反比例函数的性质,三角形的面积公式点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.10、B【分析】设蓝球有x个,根据摸出一个球是红球的概率是,得出方程即可求出x.【详解】设蓝球有x个,依题意得解得x=4,经检验,x=4是原方程的解,故蓝球有4个,选B.【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.11、D【解析】如图:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案为D.12、A【解析】根据菱形的周长求出其边长,再根据菱形的性质得出对角线互相垂直,最后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】∵四边形是菱形,周长为28∴AB=7,AC⊥BD∴OH=故选:A【点睛】本题考查的是菱形的性质及直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是关键.二、填空题(每题4分,共24分)13、(9.5,-0.25)【详解】由抛物线可求;又抛物线某是依次绕系列点旋转180°,根据中心对称的特征得:,.根据以上可知抛物线顶点的规律为(的整数);根据规律可计算点的横坐标为,点的纵坐标为.∴顶点的坐标为故答案为:(9.5,-0.25)【点睛】本题主要是以二次函数的图象及其性质为基础,再根据轴对称和中心对称找顶点坐标的规律.关键是抛物线顶点到坐标轴的距离的变化,再根据规律计算.14、20个【解析】∵通过大量重复摸球试验后发现,摸到红球的频率是0.2,口袋中有5个红球,∵假设有x个白球,∴=0.2,解得:x=20,∴口袋中有白球约有20个.故答案为20个.15、105°.【分析】连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.【详解】连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=1,则tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.故答案为105°.16、.【解析】根据一元二次方程根与系数的关系即可得出答案.【详解】解:设方程的另一根为x1,又∵x2=2,∴2x1=3,解得x1=,故答案是:.【点睛】本题主要考查一元二次方程根与系数的关系,应该熟练掌握两根之和,两根之积.17、30°【解析】试题解析:∵关于x的方程有两个相等的实数根,∴解得:∴锐角α的度数为30°;故答案为30°.18、1【分析】设该群的人数是x人,则每个人要发其他(x﹣1)张红包,则共有x(x﹣1)张红包,等于156个,由此可列方程.【详解】设该群共有x人,依题意有:x(x﹣1)=156解得:x=﹣12(舍去)或x=1.故答案为1.【点睛】本题考查的是一元二次方程的应用,正确找准等量关系列方程即可,比较简单.三、解答题(共78分)19、(1)证明见解析;(2);(3)①,②.【分析】(1)由圆内接四边形性质得,又,从而可证明;(2)过作于,证明,得,在直角中求出BH的值即可得到结论;(3)①同(2)可得,根据三角形面积公式求解即可;②过作于,则,用含x的代数式表示出的面积,列出方程求解即可.【详解】(1)∵,∴(2)过作于,∵∴∴∴∴∵在直角中,∴∴(3)①由(2)得AH=1,当时,∴②过作于,则,∵,∴,∴,∴,∴∵∴∴解得,经检验,是方程的解.【点睛】本题考查了圆的综合知识、相似三角形的判定与性质等知识,解题的关键是得到,综合性较强,难度较大.20、【分析】列举出所有等情况和抽到一男一女的情况数,再根据概率公式即可得出答案.【详解】设三个女生记为,,,两个男生记为,.列表如下:有且只有以上20种情形,它们发生的机会均等,抽到一男一女有12种情形,∴(一男一女)=【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21、,【分析】把x=1代入已知方程,列出关于m的新方程,通过解新方程来求m的值;由根与系数的关系来求方程的另一根.【详解】解:由题意得:,解得,当时,方程为,解得:,,∴方程的另一根.【点睛】本题考查了一元二次方程的解,根与系数的关系.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.22、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.【分析】(1)根据正切的定义求出BC,得到点B的坐标;(2)根据△ABC∽△ADB,得到=,代入计算求出AD,得到点D的坐标;(3)分△APQ∽△ABD、△AQP∽△ABD两种情况,根据相似三角形的性质列式计算即可.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵∠ACB=90°,tan∠BAC=,∴=,即=,解得,BC=3,∴点B的坐标为(1,3);(2)如图1,作BD⊥BA交x轴于点D,则∠ACB=∠ABD=90°,又∠A=∠A,∴△ABC∽△ADB,∴=,在Rt△ABC中,AB===5,∴=,解得,AD=,则OD=AD﹣AO=,∴点D的坐标为(,0);(3)存在,由题意得,AP=2t,AQ=﹣t,当PQ⊥AB时,PQ∥BD,∴△APQ∽△ABD,∴=,即=,解得,t=,当PQ⊥AD时,∠AQP=∠ABD,∠A=∠A,∴△AQP∽△ABD,∴=,即=,解得,t=,综上所述,当t=s或s时,△APQ与△ADB相似.【点睛】本题考查的是相似三角形的判定和性质、坐标与图形性质,掌握相似三角形的判定定理和性质定理是解题的关键.23、(1)9,1;(2)乙【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:=9方差是:(2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.24、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(,)或(,﹣),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超市经营合同三篇
- 医用电子仪器设备相关行业投资方案范本
- 市场定位与品牌战略计划
- 新型地热用热交换器相关项目投资计划书
- UV激光切割机相关行业投资规划报告范本
- 大孔烧结空心砖相关行业投资规划报告
- 结合地方文化的艺术课程设计计划
- 汽车厂生产线升级改造工程合同三篇
- 葡萄运输合同三篇
- 设计优化培训
- 《管理的实践》读后感
- 专升本数学知到智慧树章节测试课后答案2024年秋江苏财会职业学院
- 《技术的含义及作用》课件
- 《孟母三迁》课本剧剧本:环境对成长的重要性(6篇)
- 《富马酸卢帕他定口崩片关键质量属性与标准研究》
- 走近非遗 课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 新生儿坏死性小肠结肠炎临床诊疗指南解读 课件
- 网络数据安全管理条例
- 2024版2024年【人教版】二年级上册《道德与法治》全册教案
- 山东省泰安市2024届高三上学期期末数学试题(含答案解析)
- 少儿编程获奖课件
评论
0/150
提交评论