




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省日照市名校2025届九年级数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B. C. D.2.若关于的一元二次方程有实数根,则的取值范围()A. B. C.且 D.且3.如图,的顶点均在上,若,则的度数为()A. B. C. D.4.在中,,,则的值是()A. B. C. D.5.下列说法中,正确的个数()①位似图形都相似:②两个等边三角形一定是位似图形;③两个相似多边形的面积比为5:1.则周长的比为5:1;④两个大小不相等的圆一定是位似图形.A.1个 B.2个 C.3个 D.4个6.用配方法解方程x2+4x+1=0时,方程可变形为()A. B. C. D.7.如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB的长,就计算出了圆环的面积,若测量得AB的长为20米,则圆环的面积为()A.10平方米 B.10π平方米 C.100平方米 D.100π平方米8.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.59.在中,,,,那么的值等于()A. B. C. D.10.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB交于点E,则A′E的长为()A.3 B.3.2 C.3.5 D.3.6二、填空题(每小题3分,共24分)11.当x_____时,|x﹣2|=2﹣x.12.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.13.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米14.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为_____.15.分解因式____________.16.一元二次方程x2﹣x﹣=0配方后可化为__________.17.如图,在扇形OAB中,∠AOB=90°,半径OA=1.将扇形OAB沿过点B的直线折叠.点O恰好落在延长线上点D处,折痕交OA于点C,整个阴影部分的面积_____.18.在如图所示的几何体中,其三视图中有三角形的是______(填序号).三、解答题(共66分)19.(10分)如图,在四边形中,,与交于点,点是的中点,延长到点,使,连接,(1)求证:四边形是平行四边形;(2)若,,,求四边形的面积.20.(6分)甲、乙、丙、丁共四支篮球队要进行单循环积分赛(每两个队间均要比赛一场),每天比赛一场,经抽签确定比赛场次顺序.(1)甲抽到第一场出场比赛的概率为;(2)用列表法或树状图计算甲、乙两队抽得第一场进行比赛的概率.21.(6分)如图,中,弦与相交于点,,连接.求证:.22.(8分)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.23.(8分)(1)解方程:.(2)如图,四点都在上,为直径,四边形是平行四边形,求的度数.24.(8分)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=,AD=6,求线段AE的长.25.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)每件衬衫降价多少元时,商场平均每天的盈利是1050元?(2)每件衬衫降价多少元时,商场平均每天盈利最大?最大盈利是多少?26.(10分)在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC=,∴PA=tan60°×1=.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.2、D【分析】根据一元二次方程的定义和根的判别式得出且,求出即可.【详解】∵关于的一元二次方程有实数根,
∴且,
解得:1且,
故选:D.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于的不等式是解此题的关键.3、D【分析】根据同弧所对圆心角等于圆周角的两倍,可得到∠BOC=2∠BAC,再结合已知即可得到此题的答案.【详解】∵∠BAC和∠BOC分别是所对的圆周角和圆心角,∴∠BOC=2∠BAC.∵∠BAC=35°,∴∠BOC=70°.故选D.【点睛】本题考查了圆周角定理,熟练掌握定理是解题的关键.4、C【分析】作出图形,设BC=2k,AB=5k,利用勾股定理列式求出AC,再根据锐角的正弦等于对边比斜边,列式即可得解.【详解】解:如图,∴设BC=2k,AB=5k,∴由勾股定理得∴故选C.【点睛】本题考查了锐角三角函数的定义,利用“设k法”表示出三角形的三边求解更加简便.5、B【分析】根据位似图形的定义(如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.)分别对①②④进行判断,根据相似多边形的面积比等于相似比的平方,周长比等于相似比对③进行判断.【详解】解:①位似图形都相似,故该选项正确;②两个等边三角形不一定是位似图形,故该选项错误;③两个相似多边形的面积比为5:1.则周长的比为,故该选项错误;④两个大小不相等的圆一定是位似图形,故该选项正确.正确的是①和④,有两个,故选:B【点睛】本题考查的是位似图形、相似多边形性质,掌握位似图形的定义、相似多边形的性质定理是解决此题的关键.6、C【解析】根据配方法的定义即可得到答案.【详解】将原式变形可得:x2+4x+4-3=0,即(x+2)2=3,故答案选C.【点睛】本题主要考查了配方法解一元二次方程,解本题的要点在于将左边配成完全平方式,右边化为常数.7、D【解析】过O作OC⊥AB于C,连OA,根据垂径定理得到AC=BC=10,再根据切线的性质得到AB为小圆的切线,于是有圆环的面积=π•OA2-π•OC2=π(OA2-OC2)=π•AC2,即可圆环的面积.【详解】过O作OC⊥AB于C,连OA,如图,∴AC=BC,而AB=20,∴AC=10,∵AB与小圆相切,∴OC为小圆的半径,∴圆环的面积=π•OA2-π•OC2=π(OA2-OC2)=π•AC2=100π(平方米).故选D.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.8、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG•BF=2,∴AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.9、A【解析】在直角三角形中,锐角的正切等于对边比邻边,由此可得.【详解】解:如图,.故选:A.【点睛】本题主要考查了锐角三角函数中的正切,熟练掌握正切的表示是解题的关键.10、D【解析】如图,过点D作DF⊥AB,可证四边形EFDC'是矩形,可得C'E=DF,通过证明△BDF∽△BAC,可得,可求DF=2.4=C'E,即可求解.【详解】如图,过点D作DF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB==10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴,∴∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知旋转的定义、矩形的性质及相似三角形的判定与性质.二、填空题(每小题3分,共24分)11、≤2【分析】由题意可知x﹣2为负数或0,进而解出不等式即可得出答案.【详解】解:由|x﹣2|=2﹣x,可得,解得:.故答案为:≤2.【点睛】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关知识是解题的关键.12、60°.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.13、【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:14、-1.【解析】分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.
详解:把x=0代入方程得:
|a|-1=0,
∴a=±1,
∵a-1≠0,
∴a=-1.
故选A.
点睛:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项.15、【分析】先提取公因式,再利用平方差公式即可求解.【详解】故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.16、【分析】移项,配方,即可得出选项.【详解】x2﹣x﹣=0x2﹣x=x2﹣x+=+故填:.【点睛】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.17、9π﹣12.【详解】解:连接OD交BC于点E,∠AOB=90°,∴扇形的面积==9π,由翻折的性质可知:OE=DE=3,在Rt△OBE中,根据特殊锐角三角函数值可知∠OBC=30°,在Rt△COB中,CO=2,∴△COB的面积=1,∴阴影部分的面积为=9π﹣12.故答案为9π﹣12.【点睛】本题考查翻折变换(折叠问题)及扇形面积的计算,掌握图形之间的面积关系是本题的解题关键.18、①【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此【详解】解:圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,长方体主视图,左视图,俯视图都是矩形,
圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,所以三视图中有三角形的是①.故答案为①【点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.三、解答题(共66分)19、(1)见详解;(2)四边形ABCF的面积S=6.【分析】(1)根据平行四边形的判定推出即可.(2)通过添加辅助线作高,再根据面积公式求出正确答案.【详解】证明:(1)∵点E是BD的中点,在中,∴四边形ABCD是平行四边形∴四边形ABDF是平行四边形;(2)过C作于H,过D作于Q,∵四边形ABCD和四边形ABDF都是平行四边形,,∴四边形ABCF的面积S=【点睛】本题考查了平行四边形的判定和性质,三角形的面积等知识点,解题的关键在于综合运用定理进行推理.20、(1);(2)【分析】(1)直接利用概率公式计算可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得.【详解】解答】解:(1)甲抽到第一场出场比赛的概率为,故答案为:;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两队的有2种情况,∴甲、乙两队抽得第一场进行比赛的概率为.【点睛】本题考查了用列表法或树状图计算概率的方法,概率=所求情况数与总情况数之比21、见解析【分析】由AB=CD知,得到,再由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】解:,,即,;,在△ADE和△CBE中,,∴△ADE≌△CBE(ASA),.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.22、(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可【详解】(1)∵,a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解得或,∴A(-2,),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性质可知AN=AC=,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N点的坐标为(0,),(0,);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH,∴FH=CK=1,HE=AK=,∵抛物线的对称轴为x=-1,∴F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=-=,即E的纵坐标为-,∴E(-1,-);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(-3,0),且A(-2,),∴线段AC的中点坐标为(-2.5,),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=,∴x=-4,y=-t,-t=-×(-4)+,解得t=,∴E(-1,),F(-4,);综上可知存在满足条件的点F,此时E(-1,-)、(0,)或E(-1,),F(-4,)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题23、(1);(2)【分析】(1)根据配方法解一元二次方程即可;(2)根据圆内接四边形求角度,再根据圆周角定理:一条弧所对的圆周角等于它所对圆周角的一半解答即可.【详解】(1)解:,,即,即,解得.(2)解:∵四边形是平行四边形,,∴四边形是菱形,即是等边三角形,∴,∴.【点睛】本题主要考察了解一元二次方程以及圆的相关性质,熟练掌握圆周角定理和圆的内接四边形的性质是解题的关键.24、(1)PC是⊙O的切线;(2)【解析】试题分析:(1)结论:PC是⊙O的切线.只要证明OC∥AD,推出∠OCP=∠D=90°,即可.(2)由OC∥AD,推出,即,解得r=,由BE∥PD,AE=AB•sin∠ABE=AB•sin∠P,由此计算即可.试题解析:解:(1)结论:PC是⊙O的切线.理由如下:连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴,即,解得r=.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=×=.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.25、(1)每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.【分析】(1)设每件衬衫应降价x元,则每天多销售2x件,根据盈利=每件的利润×数量建立方程求出其解即可;
(2)根据盈利=每件的利润×数量表示出y与x的关系式,由二次函数的性质及顶点坐标求出结论.【详解】解:(1)设每件衬衫降价元根据题意,得整理,得解得答:每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)设商场每天的盈利为元.根据题意,得∵∴当时,有最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.【点睛】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,销售问题的数量关系的运用,二次函数的运用,解答时求出函数的解析式是关键.26、(2)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为2;(3)点Q坐标为:(﹣2,2)或(﹣2+,2﹣)或(﹣2﹣,2+)或(2,﹣2).【分析】(2)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图2,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年社区方案生育个人工作总结
- 古代礼仪校本课程
- 文化和自然遗产日活动方案2025年
- 如何进行护理安全教育
- 药理学基础知识
- 江西科技师范大学《TEM-8》2023-2024学年第一学期期末试卷
- 广东省深圳市龙岗区龙城初级中学2024-2025学年初三5月联合考试化学试题试卷含解析
- 2025届云南红河州一中高三下学期一模考试生物试题试卷含解析
- 忻州职业技术学院《数据运维与管理》2023-2024学年第二学期期末试卷
- 福建省龙岩市长汀县长汀、连城一中等六校2025届下学期高三物理试题高考仿真模拟考试试卷(四)含解析
- 2025年浙江义乌中国小商品城进出口有限公司招聘笔试参考题库附带答案详解
- 小提琴启蒙课件
- 人要有自信+课件-+2024-2025学年统编版道德与法治七年级下册
- 《草原生态与生物多样性》课件
- (二调)武汉市2025届高中毕业生二月调研考试 历史试卷
- 充电桩工程施工方案(3篇)
- 2024年河北互通高速公路发展集团有限公司招聘考试真题
- 2025年河南建筑职业技术学院单招职业技能测试题库审定版
- 校园环境下的学生心理健康与体育结合研究
- 化妆品营销策略与实践考核试卷
- 第十八章 平行四边形 评估测试卷(含答案)2024-2025学年数学人教版八年级下册
评论
0/150
提交评论