浙江省杭州市桐庐县2025届九年级数学第一学期期末检测试题含解析_第1页
浙江省杭州市桐庐县2025届九年级数学第一学期期末检测试题含解析_第2页
浙江省杭州市桐庐县2025届九年级数学第一学期期末检测试题含解析_第3页
浙江省杭州市桐庐县2025届九年级数学第一学期期末检测试题含解析_第4页
浙江省杭州市桐庐县2025届九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市桐庐县2025届九年级数学第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是假命题的的一个值可以是()A.1 B.2 C.3 D.42.如图,△ABC中,AB=25,BC=7,CA=1.则sinA的值为()A. B. C. D.3.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是()A.n B.n-1C.4n D.4(n-1)4.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:x…﹣3﹣1﹣101134…y…1150﹣3﹣4﹣305…给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.35.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D.6.把二次函数配方后得()A. B.C. D.7.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是(

)A.①④⑤ B.①③④⑤ C.①③⑤ D.①②③8.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=(c≠0)在同一平面直角坐标系中的图象大致是()A. B.C. D.10.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,1),下列结论:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正确结论的个数是()A.1 B.2 C.3 D.411.二次函数的图象如图所示,下列说法中错误的是(

)A.函数的对称轴是直线x=1B.当x<2时,y随x的增大而减小C.函数的开口方向向上D.函数图象与y轴的交点坐标是(0,-3)12.在平面直角坐标系中,△ABC与△A1B1C1位似,位似中心是原点O,若△ABC与△A1B1C1的相似比为1:2,且点A的坐标是(1,3),则它的对应点A1的坐标是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)二、填空题(每题4分,共24分)13.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.14.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x-2-1012345y50-3-4-30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论是_________(填上正确的序号)15.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=_____.16.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高______17.若扇形的半径为3,圆心角120,为则此扇形的弧长是________.18.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图像与轴交于点.二次函数的图像经过点,与轴交于点,与一次函数的图像交于另一点.(1)求二次函数的表达式;(2)当时,直接写出的取值范围;(3)平移,使点的对应点落在二次函数第四象限的图像上,点的对应点落在直线上,求此时点的坐标.20.(8分)某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系(1)求y与x之间的函数关系式;(2)求水流喷出的最大高度.21.(8分)如图,已知与⊙交于两点,过圆心且与⊙交于两点,平分.(1)求证:∽(2)作交于,若,,求的值.22.(10分)如图,在菱形中,点在对角线上,延长交于点.(1)求证:;(2)已知点在边上,请以为边,用尺规作一个与相似,并使得点在上.(只须作出一个,保留作图痕迹,不写作法)23.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.24.(10分)如图,中,,将绕点顺时针旋转得到,使得点的对应点落在边上(点不与点重合),连接.(1)依题意补全图形;(2)求证:四边形是平行四边形.25.(12分)一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面.(1)求圆形滚轮的半径的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:).26.如图,矩形的对角线与相交于点.延长到点,使,连结.(1)求证:四边形是平行四边形;(2)若,,请直接写出平行四边形的周长.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据判别式的意义,当m=1时,△<0,从而可判断原命题为是假命题.【详解】,解:△=n2-4,当n=1时,△<0,方程没有实数根,当n=2时,△=0,方程有两个相等的实数根,当n=3时,△>0,方程有两个不相等的实数根,当n=4时,△>0,方程有两个不相等的实数根,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、A【分析】根据勾股定理逆定理推出∠C=90°,再根据进行计算即可;【详解】解:∵AB=25,BC=7,CA=1,又∵,∴,∴△ABC是直角三角形,∠C=90°,∴=;故选A.【点睛】本题主要考查了锐角三角函数的定义,勾股定理逆定理,掌握锐角三角函数的定义,勾股定理逆定理是解题的关键.3、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和.【详解】解:如图示,由分别过点A1、A2、A3,垂直于两边的垂线,由图形的割补可知:一个阴影部分面积等于正方形面积的,即阴影部分的面积是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故选:B.【点睛】此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.4、B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣<x<1时,y<0,符合题意;(3)﹣1<x1<0,3<x1<4时,x1离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.5、C【解析】试题解析:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选C.考点:二次函数的图象;一次函数的图象.6、B【分析】运用配方法把一般式化为顶点式即可.【详解】解:==故选:B【点睛】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.7、C【分析】①根据对称轴x=1,确定a,b的关系,然后判定即可;②根据图象确定a、b、c的符号,即可判定;③方程ax2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y2<y1.【详解】解:①∵对称轴为:x=1,∴则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a<0∵对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴∴c>0∴abc<0,故②不正确;∵抛物线的顶点坐标A(1,3)∴方程ax2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B(4,0),∴抛物线与x轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y2<y1;故⑤正确.故答案为C.【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.8、A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.9、D【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的左侧可知b>0,再由函数图象交y轴的负半轴可知c<0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案.【详解】∵二次函数的图象开口向上,对称轴在y轴的左侧,函数图象交于y轴的负半轴∴a>0,b>0,c<0,∴反比例函数y=的图象必在二、四象限;一次函数y=ax﹣2b一定经过一三四象限,故选:D.【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系.10、A【分析】根据抛物线的图像和表达式分析其系数的值,通过特殊点的坐标判断结论是否正确.【详解】∵函数图象开口向上,∴,又∵顶点为(,1),∴,∴,由抛物线与轴的交点坐标可知:,∴c>1,∴abc>1,故①错误;∵抛物线顶点在轴上,∴,即,又,∴,故②错误;∵顶点为(,1),∴,∵,∴,∵,∴,则,故③错误;由抛物线的对称性可知与时的函数值相等,∴,∴,故④正确.综上,只有④正确,正确个数为1个.故选:A.【点睛】本题考查了二次函数图象与系数的关系,根据二次函数图象以及顶点坐标找出之间的关系是解题的关键.11、B【解析】利用二次函数的解析式与图象,判定开口方向,求得对称轴,与y轴的交点坐标,进一步利用二次函数的性质判定增减性即可.【详解】解:∵y=x2-2x-3=(x-1)2-4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,令x=0,得出y=-3,∴函数图象与y轴的交点坐标是(0,-3).因此错误的是B.故选:B.【点睛】本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键12、C【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或,即可求出答案.【详解】由位似变换中对应点坐标的变化规律得:点的对应点的坐标是或,即点的坐标是或故选:C.【点睛】本题考查了位似变换中对应点坐标的变化规律,理解位似的概念,并熟记变化规律是解题关键.二、填空题(每题4分,共24分)13、1【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.14、(2)(3)【分析】根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.【详解】由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为−4;故(1)小题错误;根据表格数据,当−1<x<3时,y<0,所以,−<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(−1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故答案为:(2)(3).【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.15、1【解析】如图,设△ABC的内切圆与各边相切于D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC,设半径为r,CD=r,∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3﹣r,AF=AD=4﹣r,∴4﹣r+3﹣r=5,∴r=1,∴△ABC的内切圆的半径为1,故答案为1.16、8m【分析】由题意证△ABO∽△CDO,可得,即,解之可得.【详解】如图,

由题意知∠BAO=∠C=90°,

∵∠AOB=∠COD,

∴△ABO∽△CDO,

∴,即,

解得:CD=8,

故答案为:8m.【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.17、【解析】根据弧长公式可得:=2π,故答案为2π.18、【分析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.【详解】圆心角为120°,半径为6cm的扇形的弧长为4cm∴圆锥的底面半径为2,故圆锥的高为=4cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.三、解答题(共78分)19、(1);(2)或;(3).【分析】(1)先求出A,B的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C点坐标,再根据平移的性质得到,设点,则,把D点代入二次函数即可求解.【详解】解:(1)令,得,∴.把代入,解得.把,代入,得,∴,∴二次函数的表达式为.(2)由图像可知,当时,或.(3)令,则,∴.∵平移,∴,∴.设点,则,∴,∴,(舍去).∴.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.20、(1)(2)水流喷出的最大高度为2米【分析】(1)建立平面直角坐标系,待定系数法解题,(2)求出顶点坐标即可.【详解】解:(1)由题意可得,抛物线经过(0,1.5)和(3,0),解得:a=-0.5,c=1.5,即函数表达式为y=.(2)解:∴当x=1时,y取得最大值,此时y=2.答:水流喷出的最大高度为2米.【点睛】本题考查了二次函数的解析式的求法,顶点坐标的应用,中等难度,建立平面直角坐标系是解题关键.21、(1)见解析;(2)【分析】(1)由题意可得∠BOE=∠AOC=∠D,且∠A=∠A,即可证△ACD∽△ABO;(2)由切线的性质和勾股定理可求CD的长,由相似三角形的性质可求AE=,由平行线分线段成比例可得,即可求EF的值.【详解】证明:(1)∵平分∴又∵所对圆心角是,所对的圆周角是∴∴又∵∴∽(2)∵,∴∵,∴∵,∴∵∽∴∴,∴,∵,∴∽∴∴∴【点睛】本题考查了相似三角形的判定和性质,圆的有关知识,勾股定理,求出AE的长是本题的关键.22、(1)详见解析;(2)详见解析;【分析】(1)根据菱形的性质可得:,再根据相似三角形的判定即可证出,从而得出结论;(2)根据菱形的性质,可得DA=DC,从而得出∠DAC=∠DCA,可得只需做∠CPQ=∠AEF或∠CPQ=∠AFE,即可得出与相似,然后用尺规作图作∠CPQ=∠AEF或∠CPQ=∠AFE即可.【详解】解:(1)∵四边形是菱形,∴.∴.∴.(2)∵四边形是菱形∴DA=DC∴∠DAC=∠DCA∴只需做∠CPQ=∠AEF或∠CPQ=∠AFE,即可得出与相似,尺规作图如图所示:①作∠CPQ=∠AEF,步骤为:以点E为圆心,以任意长度为半径,作弧,交EA和EF于点G、H,以P为圆心,以相同长度为半径作弧,交CP于点M,以M为圆心,以GH的长为半径作弧,两弧交于点N,连接PN并延长,交AC于Q,就是所求作的三角形;②作∠CPQ=∠AFE,作法同上;或∴就是所求作的三角形(两种情况任选其一即可).【点睛】此题考查的是菱形的性质、相似三角形的判定及性质和尺规作图,掌握菱形的性质、相似三角形的判定定理及性质定理和用尺规作图作角等于已知角是解决此题的关键.23、(1)75;4;(2)CD=4.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论