版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区河池市凤山县2025届九上数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°2.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=253.下列关于一元二次方程(,是不为的常数)的根的情况判断正确的是()A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.方程没有实数根 D.方程有一个实数根4.下列计算错误的是()A. B. C. D.5.方程的解的个数为()A.0 B.1 C.2 D.1或26.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.解方程2(5x-1)2=3(5x-1)的最适当的方法是()A.直接开平方法. B.配方法 C.公式法 D.分解因式法8.若将二次函数的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为()A. B.C. D.9.若关于的方程有两个相等的根,则的值为()A.10 B.10或14 C.-10或14 D.10或-1410.下列方程是一元二次方程的是()A. B.x2+5=0 C.x2+=8 D.x(x+3)=x2﹣111.如图,在等腰中,于点,则的值()A. B. C. D.12.如图,AB是☉O的直径,点C,D在☉O上,且,OD绕着点O顺时针旋转,连结CD交直线AB于点E,当DE=OD时,的大小不可能为()A. B. C. D.二、填空题(每题4分,共24分)13.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,设每件衬衫应降价x元,则所列方程为_______________________________________.(不用化简)14.抛物线y=(x+2)2-2的顶点坐标是________.15.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为_____.16.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____17.如图,在□ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则□ABCD的面积为________.18.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是______米.三、解答题(共78分)19.(8分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.20.(8分)永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑.位于太原市城区东南向山脚畔.数学活动小组的同学对其中一塔进行了测量.测量方法如下:如图所示,间接测得该塔底部点到地面上一点的距离为,塔的顶端为点,且,在点处竖直放一根标杆,其顶端为,在的延长线上找一点,使三点在同一直线上,测得.(1)方法1,已知标杆,求该塔的高度;(2)方法2,测得,已知,求该塔的高度.21.(8分)如图直角坐标系中,为坐标原点,抛物线交轴于点,过作轴,交抛物线于点,连结.点为抛物线上上方的一个点,连结,作垂足为,交于点.(1)求的长;(2)当时,求点的坐标;(3)当面积是四边形面积的2倍时,求点的坐标.22.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.求出每天的销售利润元与销售单价元之间的函数关系式;求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量23.(10分)已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.24.(10分)如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.25.(12分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)26.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,求四边形BDFG的周长.
参考答案一、选择题(每题4分,共48分)1、B【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【详解】连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故选B.2、C【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【详解】解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=1.故选:C.【点睛】考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.3、B【分析】首先用表示出根的判别式,结合非负数的性质即可作出判断.【详解】由题可知二次项系数为,一次项系数为,常数项为,,是不为的常数,,方程有两个不相等的实数根,故选:B.【点睛】本题主要考查了根的判别式的知识,解答此题要掌握一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根③△<0⇔方程没有实数根.4、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A:,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【点睛】此题考查算术平方根,依据,进行判断.5、C【解析】根据一元二次方程根的判别式,求出△的值再进行判断即可.【详解】解:∵x2=0,
∴△=02-4×1×0=0,∴方程x2=0有两个相等的实数根.故选C【点睛】本题考查的是一元二次方程根的判别式,当△>0时方程有两个不相等的实数根,△=0时方程有两个相等的实数根,△<0时方程没有实数根.6、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7、D【详解】解:方程可化为[2(5x-1)-3](5x-1)=0,即(10x-5)(5x-1)=0,根据分析可知分解因式法最为合适.故选D.8、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.9、D【分析】根据题意利用根的判别式,进行分析计算即可得出答案.【详解】解:∵关于的方程有两个相等的根,∴,即有,解得10或-14.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程中,当时,方程有两个相等的两个实数根是解答此题的关键.10、B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】A、方程x+2y=1是二元一次方程,故本选项错误;B、方程x2+5=0是一元二次方程,故本选项正确;C、方程x2+=8是分式方程,故本选项错误;D、方程x(x+3)=x2-1是一元一次方程,故本选项错误.故选B.【点睛】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.11、D【分析】先由,易得,由可得,进而用勾股定理分别将BD、BC长用AB表示出来,再根据即可求解.【详解】解:∵,,∴,∴,又∵,∴,在中,,∴,故选:D【点睛】本题主要考查了解三角形,涉及了等腰三角形性质和勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.12、C【分析】分三种情况求解即可:①当点D与点C在直径AB的异侧时;②当点D在劣弧BC上时;③当点D在劣弧AC上时.【详解】①如图,连接OC,设,则,,∵,,在中,,,∴,;②如图,连接OC,设,则,,,,在中,,,∴,;(3)如图,设,则,,,,由外角可知,,,,,故选C.【点睛】本题考查了圆的有关概念,旋转的性质,等腰三角形的性质,三角形外角的性质,以及分类讨论的数学思想,分类讨论是解答本题的关键.二、填空题(每题4分,共24分)13、(40-x)(2x+20)=1200【解析】试题解析:每件衬衫的利润:销售量:方程为:故答案为:点睛:这个题目属于一元二次方程的实际应用,利用销售量每件利润=总利润,列出方程即可.14、(-2,-2)【分析】由题意直接利用顶点式的特点,即可求出抛物线的顶点坐标.【详解】解:∵y=(x+2)2-2是抛物线的顶点式,∴抛物线的顶点坐标为(-2,-2).故答案为:(-2,-2).【点睛】本题主要考查的是二次函数的性质,掌握二次函数顶点式的特征是解题的关键.15、或1【分析】分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=1,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=110°,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折叠的性质得EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=110°,证出D、E、N三点共线,设BN=EN=xcm,则GN=3-x,DN=x+1,在Rt△DGN中,由勾股定理得出方程,解方程即可;②当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);【详解】解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=1,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=110°,∴DE=AD=1,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=110°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+1,在Rt△DGN中,由勾股定理得:(3﹣x)1+()1=(x+1)1,解得:x=,即BN=,②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图1所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或1;故答案为:或1.【点睛】本题主要考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理,掌握折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理是解题的关键.16、﹣2【解析】∵反比例函数y=-6x∴3=-6m,解得17、16【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF,△DEM∽△BHM∴,∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵∴∴∴∴∴∴∴∵四边形ABCD是平行四边形∴故答案为:16.18、1.【详解】解:∵BE⊥AC,CD⊥AC,∴△ABE∽△ACD,解得:故答案为1.点睛:同一时刻,物体的高度与影长的比相等.三、解答题(共78分)19、(1)30;(2)图见解析;(3)144°,30;(4).【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3),,∴m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以.【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键.20、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定与性质得出,进而得出答案;(2)根据锐角三角函数的定义列出,然后代入求值即可.【详解】解:则即解得:答:该塔的高度为55m.在中答:该塔的高度为【点睛】本题考查相似三角形的判定和性质及解直角三角形的应用,熟练掌握相似三角形对应边的比相等和角的正切值的求法是本题的解题关键.21、(1)6;(2);(3)或【分析】(1)令x=0求得A的坐标,再根据轴,令y=3即可求解;(2)证明,则,即可求解;(3)当的面积是四边形的面积的2倍时,则,,即可求解.【详解】解:(1)∵抛物线交轴于点,∴,∵轴,∴B的纵坐标为3,设B的横坐标为a,则,解得,(舍),∴,∴;(2)设,,,,,解得.(3)当的面积是四边形的面积的2倍时,则,得:,,或【点睛】本题考查的是二次函数综合,涉及到一次函数、三角形相似、图形的面积计算等,逐一分类讨论.22、;当时,;销售单价应该控制在82元至90元之间.【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得:;,抛物线开口向下.,对称轴是直线,当时,;当时,,解得,.当时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得,解得.,,销售单价应该控制在82元至90元之间.【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.23、(1);(2)的值是,该方程的另一根为.【解析】试题分析:(1)利用根的判别式列出不等式求解即可;(2)利用根与系数的关系列出有关的方程(组)求解即可.试题解析:(1)∵b2﹣4ac=22﹣4×1×(a﹣2)=12﹣4a>0,解得:a<1,∴a的取值范围是a<1;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣1.24、(1)作图见解析;(2)证明见解析.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可.(2)根据中位线定理易得△DEF∽△CAB,△D'E'F'∽△C'A'B',故可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年承德客运从业资格证考试模拟考试
- 吉首大学《妇幼保健学》2021-2022学年第一学期期末试卷
- 吉首大学《企业预算管理》2021-2022学年第一学期期末试卷
- 吉林艺术学院《数字摄影》2021-2022学年第一学期期末试卷
- 店铺砸墙协议书范文范本
- 吉林师范大学《中国思想史》2021-2022学年第一学期期末试卷
- 潮汕生意合作协议书范文范本
- 2022年国家公务员考试《申论》试题真题(行政执法)及答案解析
- 2022年公务员多省联考《申论》真题(广西A卷)及答案解析
- 个人合伙人合同协议书范文模板
- 须弥(短篇小说)
- 旋风除尘器设计与计算
- 《装配基础知识培训》
- 出口退税的具体计算方法及出口报价技巧
- PCB镀层与SMT焊接
- Unit 1 This is my new friend. Lesson 5 课件
- 2019年青年英才培养计划项目申报表
- 剪纸教学课件53489.ppt
- 芳香油的提取
- 劳动法讲解PPT-定稿..完整版
- 企业人才测评发展中心建设方案
评论
0/150
提交评论