福建省福州市华伦中学2022-2023学年数学九上期末学业水平测试试题含解析_第1页
福建省福州市华伦中学2022-2023学年数学九上期末学业水平测试试题含解析_第2页
福建省福州市华伦中学2022-2023学年数学九上期末学业水平测试试题含解析_第3页
福建省福州市华伦中学2022-2023学年数学九上期末学业水平测试试题含解析_第4页
福建省福州市华伦中学2022-2023学年数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数(b>0)与反比例函数在同一坐标系中的图象可能是()A. B. C. D.2.正五边形内接于圆,连接分别与交于点,,连接若,下列结论:①②③四边形是菱形④;其中正确的个数为()A.个 B.个 C.个 D.个3.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b4.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A. B. C. D.5.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三连个月投放单车数量的月平均增长率为x,则所列方程正确的是()A.1000(1+x)2=440 B.1000(1+x)2=1000C.1000(1+2x)=1000+440 D.1000(1+x)2=1000+4406.若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm7.如图,方格纸中4个小正方形的边长均为2,则图中阴影部分三个小扇形的面积和为()A. B. C. D.8.如图方格纸中每个小正方形的边长均为1,点P、A、C都在小正方形的顶点上.某人从点P出发,沿过A、C、P三点的圆走一周,则这个人所走的路程是()A. B. C. D.不确定9.某学校要种植一块面积为200m2的长方形草坪,要求两边长均不小于10m,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.10.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C.1 D.11.在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A. B. C. D.12.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. B.C. D.二、填空题(每题4分,共24分)13.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为_____.14.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则BC+AB的值______.15.平面直角坐标系xOy中,若点P在曲线y=上,连接OP,则OP的最小值为_____.16.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为20cm,扇面BD的长为15cm,则弧DE的长是_____.17.若,则的值为_____.18.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_________秒时.三、解答题(共78分)19.(8分)先化简,再求值:,其中x=1﹣.20.(8分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.21.(8分)正面标有数字,,3,4背面完全相同的4张卡片,洗匀后背面向上放置在桌面上.甲同学抽取一张卡片,正面的数字记为a,然后将卡片背面向上放回桌面,洗匀后,乙同学再抽取一张卡片,正面的数字记为b.(1)请用列表或画树状图的方法把所有结果表示出来;(2)求出点在函数图象上的概率.22.(10分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.23.(10分)如图,一次函数的图象与反比例函数图象交于A(-2,1),B(1,n)两点.(1)求m,n的值;(2)当一次函数的值大于反比例函数的值时,请写出自变量x的取值范围.24.(10分)如图,为的直径,为上一点,,延长至点,使得,过点作,垂足在的延长线上,连接.(1)求证:是的切线;(2)当时,求图中阴影部分的面积.25.(12分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.26.为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次随机调查的学生人数是______人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角等于______度;(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而对各选项作出判断:∵当反比例函数经过第二、四象限时,a<0,∴抛物线(b>0)中a<0,b>0,∴抛物线开口向下.所以A选项错误.∵当反比例函数经过第一、三象限时,a>0,∴抛物线(b>0)中a>0,b>0,∴抛物线开口向上,抛物线与y轴的交点在x轴上方.所以B选项正确,C,D选项错误.故选B.考点:1.二次函数和反比例函数的图象与系数的关系;2.数形结合思想的应用.2、B【分析】①先根据正五方形ABCDE的性质求得∠ABC,由等边对等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②证明△ABF∽△ACB,得,代入可得BF的长;③先证明CF∥DE且,证明四边形CDEF是平行四边形,再由证得答案;④根据平行四边形的面积公式可得:,即可求得答案.【详解】①∵五方形ABCDE是正五边形,,

∴,

∴,

∴,

同理得:,

∵,,

∴,

∵,∴,∴,则,

∴,

∵,

∴,

∴,

∴;

所以①正确;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,

∴△ABF∽△ACB,

∴,∵,∴,∵,∴,∴,解得:(负值已舍);所以②正确;③∵,,

∴,

∴CF∥DE,

∵,

∴四边形CDEF是平行四边形,∵,∴四边形CDEF是菱形,所以③正确;④如图,过D作DM⊥EG于M,

同①的方法可得,,

∴,,∴,所以④错误;综上,①②③正确,共3个,故选:B【点睛】本题考查了相似三角形的判定和性质,勾股定理,圆内接正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握圆内接正五边形的性质是解题的关键.3、B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.4、D【解析】等量关系为:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,把相关数值代入即可得到所求的方程组.【详解】解:∵鸡有2只脚,兔有4只脚,∴可列方程组为:,故选D.【点睛】本题考查了由实际问题抽象出二元一次方程组.如何列出二元一次方程组的关键点在于从题干中找出等量关系.5、D【分析】根据题意可以列出相应的一元二次方程,从而可以解答本题得出选项.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:D.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,是关于增长率的问题.6、D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选D.7、D【分析】根据直角三角形的两锐角互余求出∠1+∠2=90°,再根据正方形的对角线平分一组对角求出∠3=45°,然后根据扇形面积公式列式计算即可得解.【详解】解:由图可知,∠1+∠2=90°,∠3=45°,

∵正方形的边长均为2,

∴阴影部分的面积=.

故选:D.【点睛】本题考查了中心对称,观察图形,根据正方形的性质与直角三角形的性质求出阴影部分的圆心角是解题的关键.8、C【分析】根据题意作△ACP的外接圆,根据网格的特点确定圆心与半径,求出其周长即可求解.【详解】如图,△ACP的外接圆是以点O为圆心,OA为半径的圆,∵AC=,AP=,CP=,∴AC2=AP2+CP2∴△ACP是等腰直角三角形∴O点是AC的中点,∴AO=CO=OP=∴这个人所走的路程是故选C.【点睛】此题主要考查三角形的外接圆,解题的关键是熟知外接圆的作法与网格的特点.9、C【解析】易知y是x的反比例函数,再根据边长的取值范围即可解题.【详解】∵草坪面积为200m2,∴x、y存在关系y=200x∵两边长均不小于10m,∴x≥10、y≥10,则x≤20,故选:C.【点睛】本题考查反比例函数的应用,根据反比例函数解析式确定y的取值范围,即可求得x的取值范围,熟练掌握实际问题的反比例函数图象是解题的关键.10、A【解析】试题分析:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是.故选A.考点:概率公式.11、A【解析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.12、A【分析】抛物线平移的规律是:x值左加右减,y值上加下减,根据平移的规律解答即可.【详解】∵将抛物线向上平移3个单位,再向左平移2个单位,∴,故选:A.【点睛】此题考查抛物线的平移规律,正确掌握平移的变化规律由此列函数关系式是解题的关键.二、填空题(每题4分,共24分)13、15°【分析】根据圆周角和圆心角的关系解答即可.【详解】解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.14、4+【分析】如图所示:设圆O与BC的切点为M,连接OM.由切线的性质可知OM⊥BC,然后证明△OMG≌△GCD,得到OM=GC=3,CD=GM=BC﹣BM﹣GC=BC﹣3.设AB=a,BC=a+3,AC=3a,从而可求得∠ACB=20°,从而得到,故此可求得AB=,则BC=+2.求得AB+BC=4+.【详解】解:解:如图所示:设圆0与BC的切点为M,连接OM.

∵BC是圆O的切线,M为切点,

∴OM⊥BC.

∴∠OMG=∠GCD=90°.

由翻折的性质可知:OG=DG.

∵OG⊥GD,

∴∠OGM+∠DGC=90°.

又∵∠MOG+∠OGM=90°,

∴∠MOG=∠DGC.

在△OMG和△GCD中,,∴△OMG≌△GCD.

∴OM=GC=3.

CD=GM=BC-BM-GC=BC-3.

∵AB=CD,

∴BC-AB=3.

设AB=a,则BC=a+3.

∵圆O是△ABC的内切圆,

∴AC=AB+BC-3r.

∴AC=3a.∴.∴∠ACB=20°.∴,∴.故答案为:.考点:3、三角形的内切圆与内心;3、矩形的性质;2、翻折变换(折叠问题)15、1【分析】设点P(a,b),根据反比例函数图象上点的坐标特征可得=18,根据=,且≥2ab,可求OP的最小值.【详解】解:设点P(a,b)∵点P在曲线y=上,∴=18∵≥0,∴≥2ab,∵=,且≥2ab,∴≥2ab=31,∴OP最小值为1.【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用≥2ab是本题的关键.16、cm【分析】直接利用弧长公式计算得出答案.【详解】弧DE的长为:.故答案是:.【点睛】考查了弧长公式计算,正确应用弧长公式是解题关键.17、.【解析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.18、1【解析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函数有最大值,则当t=1时,球的高度最高.故答案为1.三、解答题(共78分)19、1﹣x,原式=.【分析】先利用分式的加减乘除运算对分式进行化简,然后把x的值代入即可.【详解】原式=当x=1﹣时,∴原式=1﹣(1﹣)=;【点睛】本题主要考查分式的化简求值,掌握分式混合运算的顺序和法则是解题的关键.20、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.21、(1)共有16种机会均等的结果;(2)(点在函数的图象上)=【分析】(1)列出图表,图见详解,(2)找出在上的点的个数,即可求出概率.【详解】(1)解:列表如下:∴共有16种机会均等的结果(2)点,,,在函数的图象上∴(点在函数的图象上)==【点睛】本题考查了用列表法求概率,属于简单题,熟悉概率的实际应用是解题关键.22、树状图见详解,【分析】画树状图展示所有9种等可能的结果数,找出两次摸出的小球所标数字之和为3的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球所标数字之和为3的结果数为2,所以两次摸出的小球所标数字之和为3的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率23、(1)m=-2,n=-2;(2)或.【解析】(1)把A(-2,1)代入反比例函数y=,求出m的值即可;把B(1,n)代入反比例函数的解析式可求出n;(2)观察函数图象得到当x<-2或0<x<1时,一次函数的图象都在反比例函数的图象的上方,即一次函数的值大于反比例函数的值.【详解】(1)解:∵点A(-2,1)在反比例函数的图象上,∴.∴反比例函数的表达式为.∵点B(1,n)在反比例函数的图象上,∴.(2)观察函数图象可知,自变量取值范围是:或.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数解析式;利用待定系数法求函数的解析式.也考查了观察函数图象的能力.24、(1)详见解析;(2).【分析】(1)连接OB,欲证是的切线,即要证到∠OBE=90°,而根据等腰三角形的性质可得到.再根据直角三角形的性质可得到,从而得到,从而得到,然后根据切线的判定方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论