




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.能说明命题“关于的方程一定有实数根”是假命题的反例为()A. B. C. D.2.从一组数据1,2,2,3中任意取走一个数,剩下三个数不变的是()A.平均数 B.众数 C.中位数 D.方差3.如图,正方形ABCD中,对角线AC,BD交于点O,点M,N分别为OB,OC的中点,则cos∠OMN的值为()A. B. C. D.14.若二次函数的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则的值的变化范围是()A. B. C. D.5.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B.C. D.6.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.7.将二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=()A.1 B. C. D.8.如图,,相交于点,.若,,则与的面积之比为()A. B. C. D.9.用配方法解方程-4x+3=0,下列配方正确的是()A.=1 B.=1 C.=7 D.=410.抛物线如图所示,给出以下结论:①,②,③,④,⑤,其中正确的个数是()A.2个 B.3个 C.4个 D.5个11.一元二次方程的两根之和为()A. B.2 C. D.312.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠D=110°,则∠AOC的度数为()A.130° B.135° C.140° D.145°二、填空题(每题4分,共24分)13.若=,则的值为________.14.如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.15.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.16.___________17.把抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.18.二次函数解析式为,当x>1时,y随x增大而增大,求m的取值范围__________三、解答题(共78分)19.(8分)(1)解方程:(2)计算:20.(8分)十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有________个班级表演这些节日,班数的中位数为________,在扇形统计图中,第四届班级数的扇形圆心角的度数为________;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用,,,表示).利用树状图或表格求出该班选择和两项的概率.21.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.22.(10分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.(1)方程x2-8x+3=0的中点值是________;(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.23.(10分)如图,在平面直角坐标系中,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点A、B、C的坐标分别为(1,﹣4)、(5,﹣4)、(4,﹣1).(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1的坐标;(2)将△A1B1C1绕顶点A1逆时针旋转90°后得到对应的△A1B2C2,画出△A1B2C2,并求出线段A1C1扫过的面积.24.(10分)在平面直角坐标系中的位置如图所示.在图中画出关于轴对称的图形,并写出顶点的坐标;将向下平移个单位长度,再向左平移个单位长度得到,画出平移后的,并写出顶点的坐标.25.(12分)如图,反比例函数与一次函数交于和两点.(1)根据题中所给的条件,求出一次函数和反比例函数的解析式.(2)结合函数图象,指出当时,的取值范围.26.综合与探究:如图,已知抛物线与x轴相交于A、B两点,与y轴交于点C,连接BC,点P为线段BC上一动点,过点P作BC的垂线交抛物线于点Q,请解答下列问题:(1)求抛物线与x轴的交点A和B的坐标及顶点坐标(2)求线段PQ长度的最大值,并直接写出及此时点P的坐标.
参考答案一、选择题(每题4分,共48分)1、D【分析】利用m=5使方程x2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.【详解】当m=5时,方程变形为x2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.故选D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、C【分析】根据中位数的定义求解可得.【详解】原来这组数据的中位数为=2,无论去掉哪个数据,剩余三个数的中位数仍然是2,故选:C.【点睛】此题考查数据平均数、众数、中位数方差的计算方法,掌握正确的计算方法才能解答.3、B【详解】∵正方形对角线相等且互相垂直平分∴△OBC是等腰直角三角形,∵点M,N分别为OB,OC的中点,∴MN//BC∴△OMN是等腰直角三角形,∴∠OMN=45°∴cos∠OMN=4、A【分析】代入两点的坐标可得,,所以,由抛物线的顶点在第一象限可得且,可得,再根据、,可得S的变化范围.【详解】将点(0,1)代入中可得将点(-1,0)代入中可得∴∵二次函数图象的顶点在第一象限∴对称轴且∴∵,∴∴故答案为:A.【点睛】本题考查了二次函数的系数问题,掌握二次函数的性质以及各系数间的关系是解题的关键.5、D【分析】根据旋转的定义进行分析即可解答【详解】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.【点睛】本题考查了图纸旋转的性质,熟练掌握是解题的关键.6、B【详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B7、D【分析】根据题意可以写出平移后的函数解析式,然后根据截x轴所得的线段长为4,可以求得a的值,本题得以解决.【详解】解:二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位之后的函数解析式为y=a(x﹣3)2﹣2,当y=0时,ax2﹣6ax+9a﹣2=0,设方程ax2﹣6ax+9a﹣2=0的两个根为x1,x2,则x1+x2=6,x1x2=,∵平移后的函数截x轴所得的线段长为4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故选:D.【点睛】本题考查解二次函数综合题,解题关键是根据题意可以写出平移后的函数解析式.8、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比为:1:2.∴△AOB和△DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.9、A【解析】用配方法解方程-4x+3=0,移项得:-4x=-3,配方得:-4x+4=1,即=1.故选A.10、D【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,再根据与x轴的交点坐标代入分析即可得到结果;【详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴ab<0,故①②正确;当x=-1时,,故③正确;当x=1时,根据图象可得,故④正确;根据函数图像与x轴有两个交点可得,故⑤正确;故答案选D.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析每一个数据是解题的关键.11、D【分析】直接利用根与系数的关系求得两根之和即可.【详解】设x1,x2是方程x2-1x-1=0的两根,则
x1+x2=1.
故选:D.【点睛】此题考查根与系数的关系,解题关键在于掌握运算公式.12、C【分析】根据“圆内接四边形的对角互补”,由∠D可以求得∠B,再由圆周角定理可以求得∠AOC的度数.【详解】解:∵∠D=110°,∴∠B=180°﹣110°=70°,∴∠AOC=2∠B=140°,故选C.【点睛】本题考查圆周角定理及圆内接四边形的性质,熟练掌握有关定理和性质的应用是解题关键.二、填空题(每题4分,共24分)13、【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.14、(-2,0)【解析】由C(0,c),D(m,c),得函数图象的对称轴是,设A点坐标为(x,0),由A.
B关于对称轴对称得,解得x=−2,即A点坐标为(−2,0),故答案为(−2,0).15、.【详解】解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.16、【分析】代入特殊角度的三角函数值计算即可.【详解】故答案为:.【点睛】本题考查了特殊角度的三角函数值计算,熟记特殊角度的三角函数值是关键.17、【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.18、m≤1【分析】先确定图像的对称轴x=,当x>1时,y随x增大而增大,则≤1,然后列不等式并解答即可.【详解】解:∵∴对称轴为x=∵当x>1时,y随x增大而增大∴≤1即m≤1故答案为m≤1.【点睛】本题考查二次函数的增减性,正确掌握二次函数得性质和解一元一次不等式方程是解答本题的关键.三、解答题(共78分)19、(1);(2)-1【分析】(1)方程因式分解后即可求出解;(2)原式利用特殊角的三角函数值计算,即可得到结果.【详解】(1),,;(2)=1-2=-1【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20、(1)40,7,81°;(2)见解析;(3).【解析】(1)根据图表可得,五届艺术节共有:;根据中位数定义和圆心角公式求解;(2)根据各届班数画图;(3)用列举法求解;【详解】解:(1)五届艺术节共有:个,第四届班数:40×22.5%=9,第五届40=13,第一至第三届班数:5,7,6,故班数的中位数为7,第四届班级数的扇形圆心角的度数为:3600×22.5%=81°;(2)折线统计图如下;.(3)树状图如下.所有情况共有12种,其中选择和两项的共有2种情况,所以选择和两项的概率为.【点睛】考核知识点:用树状图求概率.从图表获取信息是关键.21、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴点D1的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D2的坐标为(﹣5,3),当AB为斜边时,如图,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键.注意分类思想的运用.22、(1)4;(2)48.【分析】(1)根据中点值的定义进行求解即可;(2)根据中点值的定义可求得m的值,再将方程的根代入方程可求得n的值,由此即可求得答案.【详解】(1),x2-2×4x+3=0,42-3=13>0,所以中点值为4,故答案为4;(2)由中点值的定义得:,,,将代入方程,得:,,.【点睛】本题考查了一元二次方程的根,新定义,弄懂新定义是解题的关键.23、(1)详见解析;(2)图详见解析,【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(2)根据题意,作出对应点,然后顺次连接即可得到图形,再根据扇形的面积公式即可求出面积.【详解】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为:(-1,4);(2)如图所示,△A1B2C2即为所求;.所以,线段A1C1扫过的面积=.【点睛】本题考查的是旋转变换作图.无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.24、(1)作图见解析,;(2)作图见解析,【分析】(1)先根据点的对称性,画出三点的位置,再顺次连接即可得;最后根据三点在网格中的位置可得它们的坐标;(2)根据点坐标的平移,先画出三点的位置,再顺次连接即可得;最后根据三点在网格中的位置可得它们的坐标.【详解】(1)先画出三点的位置,再顺次连接即可得,作图结果如图所示:观察图形可知:顶点的坐标分别为;(2)先画出三点的位置,再顺次连接即可得,作图结果如图所示:观察图形可知:顶点的坐标为,即.【点睛】本题考查了点的对称性与平移,读懂题意,掌握在平面直角坐标系中作图的方法是解题关键.25、(1),y=x-2;(2)或【分析】(1)根据点A的坐标即可求出反比例函数的解析式,再求出B的坐标,然后将A,B的坐标代入一次函数求出a,b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论