北京中学国人民大附属中学2022-2023学年数学九年级第一学期期末考试试题含解析_第1页
北京中学国人民大附属中学2022-2023学年数学九年级第一学期期末考试试题含解析_第2页
北京中学国人民大附属中学2022-2023学年数学九年级第一学期期末考试试题含解析_第3页
北京中学国人民大附属中学2022-2023学年数学九年级第一学期期末考试试题含解析_第4页
北京中学国人民大附属中学2022-2023学年数学九年级第一学期期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣22.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1-2x)=16 B.16(1+2x)=28 C.28(1-x)2=16 D.16(1+x)2=283.点关于原点的对称点是A. B. C. D.4.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.5.如图所示的网格是正方形网格,则sinA的值为()A. B. C. D.6.设m是方程的一个较大的根,n是方程的一个较小的根,则的值是()A. B. C.1 D.27.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.8.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.9.已知二次函数的图象经过点,当自变量的值为时,函数的值为()A. B. C. D.10.若x1是方程(a≠0)的一个根,设,,则p与q的大小关系为()A.p<q B.p=q C.p>q D.不能确定二、填空题(每小题3分,共24分)11.如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为___;12.如图,的顶点均在上,,则的半径为_________.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.14.若m﹣=3,则m2+=_____.15.如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、交于点,连接AE,则tan∠DAE的值为___________.(不取近似值)16.如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为__________.17.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球____个(以上球除颜色外其他都相同).18.如图,矩形ABCD绕点A旋转90°,得矩形,若三点在同一直线上,则的值为_______________三、解答题(共66分)19.(10分)如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.(1)当点F与点A重合时,点G恰好到达点D,此时x=,当EF⊥BC时,x=;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;(3)当S=15时,求此时x的值.20.(6分)如图,在下列(边长为1)的网格中,已知的三个顶点,,在格点上,请分别按不同要求在网格中描出一个点,并写出点的坐标.(1)经过,,三点有一条抛物线,请在图1中描出点,使点落在格点上,同时也落在这条抛物线上;则点的坐标为______;(2)经过,,三点有一个圆,请用无刻度的直尺在图2中画出圆心;则点的坐标为______.21.(6分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.22.(8分)如图,有四张质地完全相同的卡片,正面分别写有四个角度,现将这四张卡片洗匀后,背面朝上.(1)若从中任意抽取--张,求抽到锐角卡片的概宰;(2)若从中任意抽取两张,求抽到的两张角度恰好互补的概率.23.(8分)某市有、两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩,请利用树状图求三位同学恰好在同一个公园游玩的概率.24.(8分)已知关于的方程(1)求证:无论为何值,方程总有实数根.(2)设,是方程的两个根,记,S的值能为2吗?若能,求出此时的值;若不能,请说明理由.25.(10分)如图,在平行四边形中,(1)求与的周长之比;(2)若求.26.(10分)用适当的方法解下列一元二次方程:(1)2x2+4x-1=0;(2)(y+2)2-(3y-1)2=0.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:由题意知抛物线y=x2+2x+m﹣1与x轴有两个交点,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案选A.考点:抛物线与x轴的交点.2、C【解析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【详解】解:设该药品平均每次降价的百分率是x,则第一次降价后的价格为28×(1﹣x)元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(﹣x)元,则列出的方程是28(1﹣x)2=1.故选:C.3、C【解析】解:点P(4,﹣3)关于原点的对称点是(﹣4,3).故选C.【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,两个点的横、纵坐标符号相反,即P(x,y)关于原点O的对称点是P′(﹣x,﹣y).4、C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.5、C【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵,BC=2,AD=,∵S△ABC=AB•CE=BC•AD,∴CE=,∴,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.6、C【分析】先解一元二次方程求出m,n即可得出答案.【详解】解方程得或,则,解方程,得或,则,,故选:C.【点睛】本题考查了解一元二次方程,掌握方程解法是解题关键.7、C【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小8、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.9、B【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.【详解】把代入,得,解得=把=3,代入==-4故选B.【点睛】本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.10、A【分析】把x1代入方程ax2-2x-c=0得ax12-2x1=c,作差法比较可得.【详解】解:∵x1是方程ax2-2x-c=0(a≠0)的一个根,

∴ax12-2x1-c=0,即ax12-2x1=c,

则p-q=(ax1-1)2-(ac+1.5)

=a2x12-2ax1+1-1.5-ac

=a(ax12-2x1)-ac-0.5

=ac-ac-0.5

=-0.5,

∵-0.5<0,

∴p-q<0,

∴p<q.

故选:A.【点睛】本题主要考查一元二次方程的解及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解,利用比差法比较大小是解题的关键.二、填空题(每小题3分,共24分)11、【解析】构造K字型相似模型,直接利用相似三角形的判定与性质得出,而由反比例性质可知S△AOD==3,即可得出答案.【详解】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,

∵∠BOA=90°,

∴∠BOC+∠AOD=90°,

∵∠AOD+∠OAD=90°,

∴∠BOC=∠OAD,

又∵∠BCO=∠ADO=90°,

∴△BCO∽△ODA,

∴,

∴,∴S△BCO=S△AOD

∵S△AOD===3,∴S△BCO=×3=1∵经过点B的反比例函数图象在第二象限,

故反比例函数解析式为:y=.

故答案为.【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正确得出S△BOC=1是解题关键.12、1【分析】连接AO,BO,根据圆周角的性质得到,利用等边三角形的性质即可求解.【详解】连接AO,BO,∵∴又AO=BO∴△AOB是等边三角形,∴AO=BO=AB=1即的半径为1故答案为1.【点睛】此题主要考查圆的半径,解题的关键是熟知圆周角的性质.13、1.【详解】∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为114、1【分析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案.【详解】解:∵=m2﹣2+=9,∴m2+=1,故答案为1.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形.15、【分析】根据AB与BC的比是黄金比得到AB∶BC=,连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,证明四边形CEDO是菱形,得到,,即可求出tan∠DAE的值;【详解】解:∵AB与BC的比是黄金比,∴AB∶BC=连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,矩形的对角线、相交于点,∵CE∥BD,DE∥AC,∴四边形CEDO是平行四边形,又∵是矩形,∴OC=OD,∴四边形CEDO是菱形(邻边相等的平行四边形是菱形),∴CD与OE垂直且平分,∴,∴,tan∠DAE,故答案为:;【点睛】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;16、【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【详解】解:如图,过O作OD⊥AB于C,交⊙O于D,

∵CD=4,OD=10,

∴OC=6,

又∵OB=10,

∴Rt△BCO中,BC=∴AB=2BC=1.

故答案是:1.【点睛】此题主要考查了垂径定理以及勾股定理,得出BC的长是解题关键.17、1【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解.故答案为:1.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.18、【分析】连接,根据旋转的性质得到,根据相似三角形的性质得,即,即可得到结论.【详解】解:连接,∵矩形ABCD绕点A旋转90°,得矩形,

∴=BC=AD,,,

∵三点在同一直线上,∴∴.即.解得或(舍去)所以.故答案为:【点睛】本题考查旋转的性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.三、解答题(共66分)19、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;(2)分两种情况:①当点F在AB上时,作GH⊥BC于H,则四边形ABHG是矩形,证明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面积公式和三角形面积公式即可得出答案;②当点F在AD上时,作FM⊥BC于M,则FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面积公式和三角形面积公式即可得出答案;(3)当x2+9x+12=15时,当x2﹣21x+102=15时,分别解方程即可.【详解】(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;故答案为:6;10;(2)∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分两种情况:①当点F在AB上时,如图1所示:作GH⊥BC于H,则四边形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴,即,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面积为S=梯形ABEG的面积﹣△EFB的面积﹣△AGF的面积=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②当点F在AD上时,如图2所示:作FM⊥BC于M,则FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴,即,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面积为S=梯形CDFE的面积﹣△CEG的面积﹣△DFG的面积=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102即S=x2﹣21x+102(6<x≤10);(3)当x2+9x+12=15时,解得:x=﹣6±(负值舍去),∴x=﹣6+;当x2﹣21x+102=15时,解得:x=14±(不合题意舍去);∴当S=15时,此时x的值为﹣6+.【点睛】本题考查二次函数的动点问题,题目较难,解题时需注意分类讨论,避免漏解.20、(1);(2)答案见解析,.【分析】(1)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,即可求解;(2)AC中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心E为:(,).【详解】解:(1)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,

故点D(3,2),

故答案为:(3,2);(2)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心E为:(,).作图如下:【点睛】本题考查的是二次函数综合运用,圆的基本性质,创新作图,求出圆心的坐标是解题的关键.21、∠P=50°【解析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【详解】∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.22、(1);(2).【分析】(1)用锐角卡片的张数除以总张数即可得出答案;(2)根据题意列出图表得出所有情况数和两张角度恰好互补的张数,再根据概率公式即可得出答案.【详解】解:(1)一共有四张卡片,其中写有锐角的卡片有2张,因此,(抽到锐角卡片)==;(2)列表如下:36°54°144°126°36°(54°,36°)(144°,36°)(126°,36°)54°(36°,54°)(144°,54°)(126°,54°)144°(36°,144°)(54°,144°)(126°,144°)126°(36°,126°)(54°,126°)(144°,126°)一共有12种等可能结果,其中符合要求的有4种结果,即因此,(抽到的两张角度恰好互补)=.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、,见解析【分析】利用树状图法找出所有的可能情况,再找三位同学恰好在同一个公园游玩的情况个数,即可求出所求的概率.【详解】解:树状图如下:由上图可知一共有种等可能性,即、、、、、、、,它们出现的可能性选择,其中三位同学恰好在同一个公园游玩的有种等可能性,∴.【点睛】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论