安徽省沿淮教育联盟2022-2023学年数学九上期末联考模拟试题含解析_第1页
安徽省沿淮教育联盟2022-2023学年数学九上期末联考模拟试题含解析_第2页
安徽省沿淮教育联盟2022-2023学年数学九上期末联考模拟试题含解析_第3页
安徽省沿淮教育联盟2022-2023学年数学九上期末联考模拟试题含解析_第4页
安徽省沿淮教育联盟2022-2023学年数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知2x=3y,则下列比例式成立的是()A. B. C. D.2.已知关于x的方程x2-kx-6=0的一个根为x=-3,则实数k的值为()A.1 B.-1 C.2 D.-23.如图所示,在矩形ABCD中,点F是BC的中点,DF的延长线与AB的延长线相交于点E,DE与AC相交于点O,若,则()A.4 B.6 C.8 D.104.一次函数y=﹣3x+b图象上有两点A(x1,y1),B(x2,y2),若x1<x2,则y1,y2的大小关系是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1,y2的大小5.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠DAE=20°,则∠BAC的度数为()A.70° B.80° C.90° D.100°6.在Rt△ABC中,∠C=90°,若cosB=,则∠B的度数是()A.90° B.60° C.45° D.30°7.二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,则t的值为()A.0 B. C.1 D.28.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B. C. D.9.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.10.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180° B.经过有交通信号的路口,遇到红灯C.太阳从东方升起 D.任意一个五边形的外角和等于540°11.如图,数轴上的点,,,表示的数分别为,,,,从,,,四点中任意取两点,所取两点之间的距离为的概率是()A. B. C. D.12.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A.19.4 B.19.5 C.19.6 D.19.7二、填空题(每题4分,共24分)13.如图,AB是⊙O的直径,AB=6,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为_____.14.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.15.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.16.若函数为关于的二次函数,则的值为__________.17.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x个人,列出方程为______.18.二次函数的图象与轴只有一个公共点,则的值为________.三、解答题(共78分)19.(8分)超速行驶被称为“马路第一杀手”,为了让驾驶员自觉遵守交通规则,市公路检测中在一事故多发地段安装了一个测速仪器,如图所示,已知检测点A设在距离公路BC20米处,∠B=45°,∠C=30°,现测得一辆汽车从B处行驶到C处所用时间为2.7秒.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:1.7,≈1.4)20.(8分)下表是某地连续5天的天气情况(单位:):日期1月1日1月2日1月3日1月4日1月5日最高气温57684最低气温-20-213(1)1月1日当天的日温差为______(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.21.(8分)九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I)所示:小花708090807090801006080小红908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表I的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.22.(10分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.23.(10分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.24.(10分)计算:(1);(2)解方程25.(12分)如图,Rt△FHG中,H=90°,FH∥x轴,,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数的图像与x轴交于A、B两点,与y轴交于点E(0,),顶点为C(1,),点D为二次函数图像的顶点.(1)求二次函数y1的函数关系式;(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图像上,求点G的坐标及△FHG的面积;(3)设一次函数y=mx+m与函数y1、y2的图像对称轴右侧曲线分别交于点P、Q.且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值并判断以C、D、Q、P为顶点的四边形形状,请说明理由.26.如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=,求点O到弦AB的距离.

参考答案一、选择题(每题4分,共48分)1、C【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.2、B【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【详解】解:因为x=-3是原方程的根,所以将x=-3代入原方程,即(-3)2+3k−6=0成立,解得k=-1.故选:B.【点睛】本题考查的是一元二次方程的根即方程的解的定义,解题的关键是把方程的解代入进行求解.3、C【解析】由矩形的性质得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA证明△BEF≌△CDF,得出BE=CD=AB,则AE=2AB=2CD,再根据AOECOD,面积比等于相似比的平方即可。【详解】∵四边形ABCD是矩形,

∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,

∴∠EBF=90°,

∵F为BC的中点,

∴BF=CF,

在△BEF和△CDF中,,

∴△BEF≌△CDF(ASA),

∴BE=CD=AB,

∴AE=2AB=2CD,

∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故选:C.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握有关的性质与判定是解决问题的关键.4、A【分析】根据一次函数图象的增减性判断即可.【详解】∵k=﹣3<0,∴y值随x值的增大而减小,又∵x1<x1,∴y1>y1.故选:A.【点睛】本题考查一次函数图象的增减性,关键在于先判断k值再根据图象的增减性判断.5、D【分析】先根据垂直平分线的特点得出∠B=∠DAB,∠C=∠EAC,然后根据△ABC的内角和及∠DAE的大小,可推导出∠DAB+∠EAC的大小,从而得出∠BAC的大小.【详解】如下图∵DM是线段AB的垂直平分线,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∵∠DAE=20°∴∠DAB+∠EAC=80°,∴∠BAC=100°,故选:D.【点睛】本题考查垂直平分线的性质,解题关键是利用整体思想,得出∠DAB+∠EAC=80°.6、B【分析】根据锐角三角函数值,即可求出∠B.【详解】解:∵在Rt△ABC中,cosB=,∴∠B=60°故选:B.【点睛】此题考查的是根据锐角三角函数值求角的度数,掌握特殊角的锐角三角函数值是解决此题的关键.7、C【解析】根据二次函数的对称轴方程计算.【详解】解:∵二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,∴﹣=0,解得,t=1,故选:C.【点睛】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.8、B【详解】由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为.∴cos∠ABC=.故选B.9、C【详解】由草坪面积为100m2,可知x、y存在关系y=,然后根据两边长均不小于5m,可得x≥5、y≥5,则x≤20,故选:C.10、B【解析】根据事件发生的可能性大小判断相应事件的类型.【详解】A.任意画一个三角形,其内角和为180°是必然事件;B.经过有交通信号的路口,遇到红灯是随机事件;C.太阳从东方升起是必然事件;D.任意一个五边形的外角和等于540°是不可能事件.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11、D【分析】利用树状图求出可能结果即可解答.【详解】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所取两点之间的距离为2的概率==.故选D.【点睛】本题考查画树状图或列表法求概率,掌握画树状图的方法是解题关键.12、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.二、填空题(每题4分,共24分)13、3【分析】作出D关于AB的对称点D',则PC+PD的最小值就是CD'的长度.在△COD'中根据边角关系即可求解.【详解】作出D关于AB的对称点D',连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为的中点,∴∠BAD'∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'AB=3,∴CD'=3.故答案为:3.【点睛】本题考查了圆周角定理以及路程的和最小的问题,正确作出辅助线是解答本题的关键.14、4【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.15、1【分析】由正方形的面积公式可求解.【详解】解:∵AC=3,

∴正方形ABCD的面积=3×3×=1,

故答案为:1.【点睛】本题考查了正方形的性质,熟练运用正方形的性质是解题的关键.16、2【分析】根据二次函数的定义,列出关于m的方程和不等式,即可求解.【详解】∵函数为关于的二次函数,∴且,∴m=2.故答案是:2.【点睛】本题主要考查二次函数的定义,列出关于m的方程和不等式,是解题的关键.17、x(x+1)+x+1=1.【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x(x+1)+x+1人感染,列出方程即可.【详解】解:设每轮传染中平均一人传染x人,则第一轮后有x+1人感染,第二轮后有x(x+1)+x+1人感染,由题意得:x(x+1)+x+1=1.故答案为:x(x+1)+x+1=1.【点睛】本题主要考查了由实际问题抽象出一元二次方程,掌握一元二次方程是解题的关键.18、【解析】根据△=b2-4ac=0时,抛物线与x轴有1个交点得到△=(-2)2-4m=0,然后解关于m的方程即可.【详解】根据题意得△=(-2)2-4m=0,

解得m=1.

故答案是:1.【点睛】考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.三、解答题(共78分)19、(1)(20+20)m;(2)这辆汽车没超速,见解析【分析】(1)如图作AD⊥BC于D.则AD=20m,求出CD、BD即可解决问题;(2)求出汽车的速度和此地限速为80km/h比较大小,即可解决问题,注意统一单位.【详解】(1)如图作AD⊥BC于D.则AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°,∴CDAD=20m,∴BC=BD+DC=(20+20)m.(2)结论:这辆汽车没超速.理由如下:∵BC=BD+DC=(20+20)BC≈54m,∴汽车速度20m/s=72km/h.∵72km/h<80km/h,∴这辆汽车没超速.【点睛】本题考查了解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解答本题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20、(1)7;(2)日最低气温波动大.【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案(2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可.【详解】解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7(2)最高气温的平均数:最高气温的方差为:同理得出,最低气温的平均数:最低气温的方差为:∵∴日最低气温波动大.【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.21、(1)见解析;(2)小华的方差是120,小华成绩稳定.【分析】(1)由表格可知,小华10次数学测试中,得60分的1次,得70分的2次,得1分的4次,得90分的2次,得100分的1次,根据加权平均数的公式计算小华的平均成绩,将小红10次数学测试的成绩从小到大排列,可求出中位数,根据李华的10个数据里的各数出现的次数,可求出测试成绩的众数;

(2)先根据方差公式分别求出两位同学10次数学测试成绩的方差,再比较大小,其中较小者成绩较为稳定.【详解】(1)解:(1)小华的平均成绩为:(60×1+70×2+1×4+90×2+100×1)=1,

将小红10次数学测试的成绩从小到大排列为:60,60,60,1,1,90,90,90,90,100,第五个与第六个数据为1,90,所以中位数为=85,

小华的10个数据里1分出现了4次,次数最多,所以测试成绩的众数为1.

填表如下:姓

名平均成绩中位数众数小华11小红85(2)小华同学成绩的方差:S2=[102+02+102+02+102+102+02+202+202+02]

=(100+100+100+100+400+400)

=120,

小红同学成绩的方差为200,

∵120<200,

∴小华同学的成绩较为稳定.【点睛】本题考查平均数、中位数、众数、方差的意义.一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、(1)见解析;(2)1.【分析】根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.【详解】(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考点:作图—复杂作图;平行四边形的性质23、(1)见解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性质证出∠ODB=∠C.得出OD∥AC.由已知条件证出DE⊥OD,即可得出结论;(1)由垂径定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面积,再求出扇形BOD的面积,即可得出结果.【详解】(1)连接OD,如图1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.(1)过O作OF⊥BD于F,如图1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S阴=S扇形BOD﹣S△BOD==(3π﹣)cm1.【点睛】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、勾股定理、三角形和扇形面积的计算等知识;熟练掌握切线的判定,由垂径定理和勾股定理求出OF和DF是解决问题(1)的关键.24、(1);(2)【分析】(1)先把特殊角的三角函数值代入原式,然后再计算;

(2)利用配方法求解即可.【详解】解:(1)原式(2)∵,∴,即,则,∴.【点睛】本题考查了特殊角的三角函数值以及用因式分解法解方程.记住特殊角的三角函数值是解题关键,25、(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.【分析】(1)利用顶点式求解即可,(2)将G点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH,交x轴于点R,由平行线的性质得证明△AQR∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m中,即可证明四边形CDPQ为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y轴交于点E(0,),顶点为C(1,),∴y=a(x-1)2-4,代入E(0,),解得a=1,()(2)设G[a,0.6(a+1)],代入函数关系式,得,,解得a1=3.6,a2=-1(舍去),所以点G坐标为(3.6,2.76).S△FHG=6.348(3)y=mx+m=m(x+1),当x=-1时,y=0,所以直线y=mx+m延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.因为FH∥x轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以=0.6,设Q[n,0.6(n+1)],代入y=mx+m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论