2023-2024学年吕梁市重点中学中考押题数学预测卷含解析_第1页
2023-2024学年吕梁市重点中学中考押题数学预测卷含解析_第2页
2023-2024学年吕梁市重点中学中考押题数学预测卷含解析_第3页
2023-2024学年吕梁市重点中学中考押题数学预测卷含解析_第4页
2023-2024学年吕梁市重点中学中考押题数学预测卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年吕梁市重点中学中考押题数学预测卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A. B. C. D.2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5° C.30° D.35°3.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.44.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.或2 B.或2 C.2或2 D.2或25.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为()A. B. C. D.6.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]7.-3的相反数是()A. B.3 C. D.-38.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A. B. C. D.9.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大10.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=2二、填空题(本大题共6个小题,每小题3分,共18分)11.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.12.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为13.对于函数,我们定义(m、n为常数).例如,则.已知:.若方程有两个相等实数根,则m的值为__________.14.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.15.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为.16.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.三、解答题(共8题,共72分)17.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.18.(8分)如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.19.(8分)如图,,,,求证:。20.(8分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.21.(8分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由22.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.23.(12分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,,)24.已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.2、D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3、B【解析】

此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.4、C【解析】

过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【详解】过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,连接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如图②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故选C.【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.5、A【解析】试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.设BD=a,则OC=3a.∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴点C(a,a).同理,可求出点D的坐标为(1﹣a,a).∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.6、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象7、B【解析】

根据相反数的定义与方法解答.【详解】解:-3的相反数为.故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.8、B【解析】

无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有,共2个,∴卡片上的数为无理数的概率是.故选B.【点睛】本题考查了无理数的定义及概率的计算.9、D【解析】

根据众数、中位数和平均数及方差的定义逐一判断可得.【详解】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是161,此选项正确;D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.故选D.【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.10、A【解析】

将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【详解】解:原方程可化为:(x﹣1)(x﹣1)=0,∴x1=1,x1=1.故选:A.【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.二、填空题(本大题共6个小题,每小题3分,共18分)11、40°【解析】

直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,

∵∠1+∠2+∠3+∠4=220°,

∴∠1+∠2+∠6+∠3+∠4+∠7=360°,

∴∠6+∠7=140°,

∴∠5=180°-(∠6+∠7)=40°.

故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.12、72°或144°【解析】

∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°13、【解析】分析:根据题目中所给定义先求,再利用根与系数关系求m值.详解:由所给定义知,,若=0,解得m=.点睛:一元二次方程的根的判别式是,△=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.

△>0说明方程有两个不同实数解,△=0说明方程有两个相等实数解,△<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.14、AC⊥BD【解析】

根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC⊥BD.【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.15、-6【解析】

分析:∵菱形的两条对角线的长分别是6和4,∴A(﹣3,2).∵点A在反比例函数的图象上,∴,解得k=-6.【详解】请在此输入详解!16、5【解析】

本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.

连接OC,交AB于D点.连接OA.

∵尺的对边平行,光盘与外边缘相切,

∴OC⊥AB.

∴AD=4cm.

设半径为Rcm,则R2=42+(R-2)2,

解得R=5,

∴该光盘的半径是5cm.

故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.三、解答题(共8题,共72分)17、(1)120,30%;(2)作图见解析;(3)1.【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、“一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,补全统计图如下:(3)1800×=1人.考点:条形统计图;扇形统计图;用样本估计总体.18、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)【解析】分析:(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);故答案为(﹣2,﹣5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.故答案为6+4.点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.19、见解析【解析】

据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.【详解】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角20、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】

利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.21、(1)10%;(1)会跌破10000元/m1.【解析】

(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.22、(1)证明见解析;(2)OC=15【解析】试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.试题解析:(1)连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO,OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论