2024年中考数学真题分类汇编(全国)(第一期)专题23 圆的有关位置关系(36题)(解析版)_第1页
2024年中考数学真题分类汇编(全国)(第一期)专题23 圆的有关位置关系(36题)(解析版)_第2页
2024年中考数学真题分类汇编(全国)(第一期)专题23 圆的有关位置关系(36题)(解析版)_第3页
2024年中考数学真题分类汇编(全国)(第一期)专题23 圆的有关位置关系(36题)(解析版)_第4页
2024年中考数学真题分类汇编(全国)(第一期)专题23 圆的有关位置关系(36题)(解析版)_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题23圆的有关位置关系(36题)一、单选题1.(2024·福建·中考真题)如图,已知点在上,,直线与相切,切点为,且为的中点,则等于(

)A. B. C. D.【答案】A【分析】本题考查了切线的性质,三角形内角和以及等腰三角形的性质,根据C为的中点,三角形内角和可求出,再根据切线的性质即可求解.【详解】∵,为的中点,∴∵∴∵直线与相切,∴,∴故选:A.2.(2024·上海·中考真题)在中,,,,点在内,分别以为圆心画,圆半径为1,圆半径为2,圆半径为3,圆与圆内切,圆与圆的关系是(

)A.内含 B.相交 C.外切 D.相离【答案】B【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解:圆半径为1,圆半径为3,圆与圆内切,圆含在圆内,即,在以为圆心、为半径的圆与边相交形成的弧上运动,如图所示:当到位置时,圆与圆圆心距离最大,为,,圆与圆相交,故选:B.3.(2024·河南·中考真题)如图,是边长为的等边三角形的外接圆,点D是的中点,连接,.以点D为圆心,的长为半径在内画弧,则阴影部分的面积为(

)A. B. C. D.【答案】C【分析】过D作于E,利用圆内接四边形的性质,等边三角形的性质求出,利用弧、弦的关系证明,利用三线合一性质求出,,在中,利用正弦定义求出,最后利用扇形面积公式求解即可.【详解】解∶过D作于E,∵是边长为的等边三角形的外接圆,∴,,,∴,∵点D是的中点,∴,∴,∴,,∴,∴,故选:C.【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.4.(2024·四川泸州·中考真题)如图,,是的切线,切点为A,D,点B,C在上,若,则(

)A. B. C. D.【答案】C【分析】本题考查了圆的内接四边形的性质,切线长定理,等腰三角形的性质等知识点,正确作辅助线是解题关键.根据圆的内接四边形的性质得,由得,由切线长定理得,即可求得结果.【详解】解:如图,连接,∵四边形是的内接四边形,∴,∵,∴,即,∴,∵,是的切线,根据切线长定理得,∴,∴,∴.故选:C.二、填空题5.(2024·浙江·中考真题)如图,是的直径,与相切,A为切点,连接.已知,则的度数为

【答案】/40度【分析】本题考查切线的性质,掌握圆的切线垂直于过切点的半径是解题的关键.【详解】解:∵与相切,∴,又∵,∴,故答案为:.6.(2024·内蒙古包头·中考真题)如图,四边形是的内接四边形,点在四边形内部,过点作的切线交的延长线于点,连接.若,,则的度数为.【答案】/105度【分析】本题考查了切线的性质,等腰三角形的性质,圆内接四边形的性质等知识,连接,利用等边对等角得出,,利用切线的性质可求出,然后利用圆内接四边形的性质求解即可.【详解】解∶连接,∵,,∴,,∵是切线,∴,即,∵,∴,∴,∵四边形是的内接四边形,∴,故答案为:.7.(2024·天津·中考真题)如图,在每个小正方形的边长为的网格中,点,,均在格点上.

(1)线段的长为;(2)点在水平网格线上,过点,,作圆,经过圆与水平网格线的交点作切线,分别与,的延长线相交于点,,中,点在边上,点在边上,点在边上.请用无刻度的直尺,在如图所示的网格中,画出点,,,使的周长最短,并简要说明点,,的位置是如何找到的(不要求证明).【答案】图见解析,说明见解析【分析】此题考查了勾股定理、切线的性质等知识,根据题意正确作图是解题的关键.(1)利用勾股定理即可求解;(2)作点关于、的对称点、,连接、,分别与、相交于点、,的周长等于的长,等腰三角形的腰长为,当的值最小时,的值最小,此时是切点,由此作图即可.【详解】(1)由勾股定理可知,,故答案为:(2)如图,根据题意,切点为;连接并延长,与网格线相交于点;取圆与网格线的交点和格点,连接并延长,与网格线相交于点;连接,分别与,相交于点,,则点,,即为所求.

8.(2024·江苏扬州·中考真题)如图,已知两条平行线、,点A是上的定点,于点B,点C、D分别是、上的动点,且满足,连接交线段于点E,于点H,则当最大时,的值为.【答案】【分析】证明,得出,根据,得出,说明点H在以为直径的圆上运动,取线段的中点O,以点O为圆心,为半径画圆,则点在上运动,说明当与相切时最大,得出,根据,利用,即可求出结果.【详解】解:∵两条平行线、,点A是上的定点,于点B,∴点B为定点,的长度为定值,∵,∴,,∵,∴,∴,∵,∴,∴点H在以为直径的圆上运动,如图,取线段的中点O,以点O为圆心,为半径画圆,则点在上运动,∴当与相切时最大,∴,∵,∴,∵,∴,故答案为:.【点睛】本题主要考查了圆周角定理,全等三角形的性质和判定,平行线的性质,切线的性质,解直角三角形等知识点,解题的关键是确定点H的运动轨迹.9.(2024·四川凉山·中考真题)如图,的圆心为,半径为,是直线上的一个动点,过点作的切线,切点为,则的最小值为【答案】【分析】记直线与x,y轴分别交于点A,K,连接;由直线解析式可求得点A、K的坐标,从而得均是等腰直角三角形,由相切及勾股定理得:,由,则当最小时,最小,点P与点K重合,此时最小值为,由勾股定理求得的最小值,从而求得结果.【详解】解:记直线与x,y轴分别交于点A,K,连接,当,,当,即,解得:,即;而,∴,∴均是等腰直角三角形,∴,∴,∵与相切,∴,∴,∵,∴当最小时即最小,∴当时,取得最小值,即点P与点K重合,此时最小值为,在中,由勾股定理得:,∴,∴最小值为.【点睛】本题考查了圆的切线的性质,勾股定理,一次函数与坐标轴的交点问题,垂线段最短,正确添加辅助线是解题的关键.10.(2024·山东烟台·中考真题)如图,在中,,,.E为边的中点,F为边上的一动点,将沿翻折得,连接,,则面积的最小值为.【答案】/【分析】根据平行四边形的性质得到,,,由折叠性质得到,进而得到点在以E为圆心,4为半径的圆上运动,如图,过E作交延长线于M,交圆E于,此时到边的距离最短,最小值为的长,即此时面积的最小,过C作于N,根据平行线间的距离处处相等得到,故只需利用锐角三角函数求得即可求解.【详解】解:∵在中,,,∴,,则,∵E为边的中点,∴,∵沿翻折得,∴,∴点在以E为圆心,4为半径的圆上运动,如图,过E作交延长线于M,交圆E于,此时到边的距离最短,最小值为的长,即面积的最小,过C作于N,∵,∴,在中,,,∴,∴,∴面积的最小值为,故答案为:.【点睛】本题考查平行四边形的性质、折叠性质、圆的有关性质以及直线与圆的位置关系、锐角三角函数等知识,综合性强的填空压轴题,得到点的运动路线是解答的关键.三、解答题11.(2024·广东·中考真题)如图,在中,.

(1)实践与操作:用尺规作图法作的平分线交于点D;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D为圆心,长为半径作.求证:与相切.【答案】(1)见解析(2)证明见解析【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作于,由角平分线的性质定理可得,由是半径,,可证与相切.【详解】(1)解:如图1,即为所作;

(2)证明:如图2,作于,

∵是的平分线,,,∴,∵是半径,,∴与相切.12.(2024·内蒙古赤峰·中考真题)如图,中,,,经过B,C两点,与斜边交于点E,连接并延长交于点M,交于点D,过点E作,交于点F.(1)求证:是的切线;(2)若,,求的长.【答案】(1)见解析(2)【分析】(1)连接,延长,交于点,连接根据直径所对的圆周角是直角求出,得,,由可得,从而可证明是的切线;(2)由得,即,证明,得,由得,故可得,由勾股定理求出,得,由勾股定理求出,,根据求出,进一步求出【详解】(1)证明:连接,延长,交于点,连接如图,∵∴是等腰直角三角形,∴∵是的直径,∴∴∴∴∵∴即∵是的半径,∴是的切线;(2)解:∵,,∴,∵∴,∵,∴,∴,∵,∴,∴,在等腰直角三角形中,,∴,解得,,∴,∴在中,∴,又,∴∴∴∴【点睛】本题主要考查平行线的性质,等腰直角三角形的判定与性质,切线的判定,圆周角定理,勾股定理以及相似三角形的判定与性质,正确作出辅助线构造圆周角是解答本题的关键.13.(2024·四川内江·中考真题)如图,是的直径,是的中点,过点作的垂线,垂足为点.

(1)求证:;(2)求证:是的切线;(3)若,,求阴影部分的面积.【答案】(1)见解析(2)见解析(3)【分析】+(1)分别证明,,从而可得结论;(2)连接,证明,可得,再进一步可得结论;(3)连接、,证明四边形是矩形,可得,再证明,可得,可得,利用可得答案.【详解】(1)证明:∵是的直径∴,又∵,∴,∴,∵是的中点,∴,∴,∴;(2)证明:连接

∵,∴,∵,∴,∴,∵,∴,∵是的半径,∴是的切线;(3)解:连接、

∵是的直径,∴,∵,∴四边形是矩形,∴,∵是半径,是的中点,∴,,即,∵,∴,∴,∴,∴【点睛】本题主要考查了圆周角定理、切线的判定及扇形的面积公式,熟练地掌握相似三角形的判定和切线的判定是解决本题的关键。14.(2024·江苏盐城·中考真题)如图,点C在以为直径的上,过点C作的切线l,过点A作,垂足为D,连接.(1)求证:;(2)若,,求的半径.【答案】(1)见解析(2)【分析】题目主要考查切线的性质,相似三角形的判定和性质及勾股定理解三角形,作出辅助线,综合运用这些知识点是解题关键.(1)连接,根据题意得,,利用等量代换确定,再由相似三角形的判定即可证明;(2)先由勾股定理确定,然后利用相似三角形的性质求解即可.【详解】(1)证明:连接,如图所示:∵是的切线,点C在以为直径的上,∴,,∴,∵,∴,∴,∵,∴,∴,∴;(2)∵,,∴,由(1)得,∴即,∴,∴的半径为.15.(2024·四川凉山·中考真题)如图,是的直径,点在上,平分交于点,过点的直线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)连接并延长,分别交于两点,交于点,若的半径为,求的值.【答案】(1)见详解(2)【分析】(1)连接,根据等腰三角形的性质及角平分线得到,根据平行线的性质得,即可证明;(2)连接,先解,求得,,则,,可证明,由,得,故,证明,即可得到.【详解】(1)解:连接,∵,∴,∵平分,∴,∴,∴,∴∵,∴,∴,即,∵是的半径∴是的切线;(2)解:连接,∵,∴在中,,由勾股定理得:∴,∵在中,,∴,∵,∴,而,∴,∴,∴,∵,∴,∴,∴,∵,∴,∵,∴,∴,∴.【点睛】本题考查了圆的切线的判定,相似三角形的判定与性质,勾股定理,的直角三角形的性质,等腰三角形的性质,正确添加辅助线是解题的关键.16.(2024·山东烟台·中考真题)如图,是的直径,内接于,点I为的内心,连接并延长交O于点D,E是上任意一点,连接,,,.(1)若,求的度数;(2)找出图中所有与相等的线段,并证明;(3)若,,求的周长.【答案】(1)(2),证明见解析(3)30【分析】(1)利用圆周角定理得到,再根据三角形的内角和定理求,然后利用圆内接四边形的对角互补求解即可;(2)连接,由三角形的内心性质得到内心,,,然后利用圆周角定理得到,,利用三角形的外角性质证得,然后利用等角对等边可得结论;(3)过I分别作,,,垂足分别为Q、F、P,根据内切圆的性质和和切线长定理得到,,,利用解直角三角形求得,,进而可求解.【详解】(1)解:∵是的直径,∴,又,∴,∵四边形是内接四边形,∴,∴;(2)解:,证明:连接,∵点I为的内心,∴,,∴,∴,,∵,,∴,∴;(3)解:过I分别作,,,垂足分别为Q、F、P,∵点I为的内心,即为的内切圆的圆心.∴Q、F、P分别为该内切圆与三边的切点,∴,,,∵,,,∴,∵,,,∴,∴的周长为.【点睛】本题考查圆周角定理、圆内接四边形的性质、三角形的内角和定理、三角形的内心性质、三角形的外角性质、等腰三角形的判定、切线长定理以及解直角三角形,熟练掌握相关知识的联系与运用是解答的关键.17.(2024·甘肃·中考真题)如图,是的直径,,点E在的延长线上,且.(1)求证:是的切线;(2)当的半径为2,时,求的值.【答案】(1)见解析(2)【分析】(1)连接,,证明垂直平分,得出,证明,得出,说明,即可证明结论;(2)根据是的直径,得出,根据勾股定理求出,根据三角函数定义求出,证明,得出即可.【详解】(1)证明:连接,,如图所示:∵,∴,∵,∴点O、B在的垂直平分线上,∴垂直平分,∴,∵,∴,∴,∴,∵是的直径,∴是的切线;(2)解:∵的半径为2,∴,∵是的直径,∴,∵,∴,∴,∵,∴,∵,∴,∴.【点睛】本题主要考查了切线的判定,勾股定理,求一个角的正切值,圆周角定理,垂直平分线的判定,平行线的判定和性质,解题的关键是作出辅助线,熟练掌握相关的判定和性质.18.(2024·山东威海·中考真题)如图,已知是的直径,点C,D在上,且.点E是线段延长线上一点,连接并延长交射线于点F.的平分线交射线于点H,.(1)求证:是的切线;(2)若,,求的长.【答案】(1)见解析(2)【分析】本题考查切线的判定,勾股定理,相似三角形的判定和性质,圆周角定理,根据角平分线的定义得到是解题的关键.(1)连接,根据圆周角定理得到,即可得到,然后根据角平分线的定义得到,然后得到即可证明切线;(2)设的半径为,根据,可以求出,然后根据,即可得到结果.【详解】(1)证明:连接,则,又∵,∴,∴,∴,∴,∴,∵平分,∴,∴,∴,又∵是半径,∴是的切线;(2)解:设的半径为,则,∵,即,解得,∴,,又∵∴,∴,即,解得.19.(2024·陕西·中考真题)如图,直线l与相切于点A,是的直径,点C,D在l上,且位于点A两侧,连接,分别与交于点E,F,连接.(1)求证:;(2)若的半径,,,求的长.【答案】(1)见解析(2).【分析】(1)利用切线和直径的性质求得,再利用等角的余角相等即可证明;(2)先求得,,证明和是等腰直角三角形,求得的长,再证明,据此求解即可.【详解】(1)证明:∵直线l与相切于点A,∴,∴,∵是的直径,∴,∴,∴;(2)解:∵,∴,,∵直线l与相切于点A,∴,∴是等腰直角三角形,∴,∵是的直径,∴,∴也是等腰直角三角形,∴,∵,∴,∵,∴,∴,∴,即,∴.【点睛】本题考查的是等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理等知识点的应用,掌握切线的性质定理、相似三角形的判定定理和性质定理是解题的关键.20.(2024·湖北·中考真题)中,,点在上,以为半径的圆交于点,交于点.且.(1)求证:是的切线.(2)连接交于点,若,求弧的长.【答案】(1)见解析(2)弧的长为.【分析】(1)利用证明,推出,据此即可证明结论成立;(2)设的半径为,在中,利用勾股定理列式计算求得,求得,再求得,利用弧长公式求解即可.【详解】(1)证明:连接,在和中,,∴,∴,∵为的半径,∴是的切线;(2)解:∵,∴,设的半径为,在中,,即,解得,∴,,,∴,∵,∴,∴弧的长为.【点睛】本题考查了切线的判定,勾股定理,三角函数的定义,弧长公式.正确引出辅助线解决问题是解题的关键.21.(2024·贵州·中考真题)如图,为半圆O的直径,点F在半圆上,点P在的延长线上,与半圆相切于点C,与的延长线相交于点D,与相交于点E,.(1)写出图中一个与相等的角:______;(2)求证:;(3)若,,求的长.【答案】(1)(答案不唯一)(2)(3)【分析】(1)利用等边对等角可得出,即可求解;(2)连接,利用切线的性质可得出,利用等边对等角和对顶角的性质可得出,等量代换得出,然后利用三角形内角和定理求出,即可得证;(3)设,则可求,,,,在中,利用勾股定理得出,求出x的值,利用可求出,即可求解.【详解】(1)解:∵,∴,故答案为:(答案不唯一);(2)证明:连接,,∵是切线,∴,即,∵,∴,∵,,∴,∴,∴;(3)解:设,则,∴,,∴,在中,,∴,解得,(舍去)∴,,,∵,∴,解得,∴.【点睛】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.22.(2024·青海·中考真题)如图,直线经过点C,且,.(1)求证:直线是的切线;(2)若圆的半径为4,,求阴影部分的面积.【答案】(1)详见解析(2)【分析】本题考查了切线的判定和性质、直角三角形的性质和勾股定理、扇形面积的计算等知识,解题的关键是掌握切线的判定与性质.(1)利用等腰三角形的性质证得,利用切线的判定定理即可得到答案;(2)在中,利用直角三角形的性质和勾股定理求得,,再根据,计算即可求解.【详解】(1)证明:连接,∵在中,,,∴,又∵是的半径,∴直线是的切线;(2)解:由(1)知,∵,∴,∴,在中,,,∴,∴,∴,.23.(2024·天津·中考真题)已知中,为的弦,直线与相切于点.(1)如图①,若,直径与相交于点,求和的大小;(2)如图②,若,垂足为与相交于点,求线段的长.【答案】(1);(2)【分析】本题考查等腰三角形的性质,切线的性质,解直角三角形,灵活运用相关性质定理是解答本题的关键.(1)根据等边对等角得到,然后利用三角形的内角和得到,然后利用平行线的性质结合圆周角定理解题即可;(2)连接,求出,再在中运用三角函数解题即可.【详解】(1)为的弦,.得.中,,又,.直线与相切于点为的直径,.即.又,.在中,.,.(2)如图,连接.∵直线与相切于点,∴∵∴.,得.在中,由,得..在中,,.24.(2024·四川乐山·中考真题)如图,是的外接圆,为直径,过点C作的切线交延长线于点D,点E为上一点,且.(1)求证:;(2)若垂直平分,,求阴影部分的面积.【答案】(1)见解析(2)【分析】(1)如图1,连接.则,即.由为直径,可得,即.则.由,可得.由,可得.则.进而可证.(2)如图2,连接.由垂直平分,可得.则为等边三角形.,.由,可得.由,可得..证明为等边三角形.则,..则....,再根据,计算求解即可.【详解】(1)证明:如图1,连接.

图1∵为的切线,∴,即.又∵为直径,∴,即.∴.∵,∴.∵,∴.∴.∴.(2)解:如图2,连接.

图2∵垂直平分,∴.又∵,∴为等边三角形.∴,.∵,∴.∵,∴.又∵,∴.∵,∴为等边三角形.∴,.∴.∴.∴.∴.∴.又∵,∴,∴阴影部分的面积为.【点睛】本题考查了切线的性质,直径所对的圆周角为直角,同弧或等弧所对的圆周角相等,平行线的判定与性质,等边三角形的判定与性质,垂直平分线的性质,正弦,扇形面积等知识.熟练掌握相关图形的性质定理、正确添加辅助线是解题的关键.25.(2024·江苏苏州·中考真题)如图,中,,D为中点,,,是的外接圆.(1)求的长;(2)求的半径.【答案】(1)(2)的半径为【分析】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理.(1)易证,得到,即可解答;(2)过点A作,垂足为E,连接,并延长交于F,连接,在中,通过解直角三角形得到,,由得到.设,则,,在中,根据勾股定理构造方程,求得,,由得到,根据正弦的定义即可求解.【详解】(1)解:,,.,即,D为AB中点,,∴.(2)解:过点A作,垂足为E,连接,并延长交于F,连接,在中,.又,.∴在中,.,.设,则,.∵在中,,,即,解得,(舍去).,.∵,.为的直径,..,即的半径为.26.(2024·甘肃临夏·中考真题)如图,直线与相切于点,为的直径,过点作于点,延长交直线于点.(1)求证:平分;(2)如果,,求的半径.【答案】(1)见解析(2)4【分析】(1)连接,根据切线的性质可得出,结合题意可证,即得出,再根据等边对等角可得出,即得出,即平分;(2)设的半径为r,则,.再根据勾股定理可列出关于r的等式,求解即可.【详解】(1)证明:如图,连接.∵直线与相切于点,∴.∵,∴,∴.∵,∴,∴,即平分;(2)解:设的半径为r,则,.在中,,∴,解得:,∴的半径为4.【点睛】本题考查切线的性质,等腰三角形的性质,同圆半径相等,平行线的判定和性质,角平分线的判定,勾股定理等知识.连接常用的辅助线是解题关键.27.(2024·广西·中考真题)如图,已知是的外接圆,.点D,E分别是,的中点,连接并延长至点F,使,连接.(1)求证:四边形是平行四边形;(2)求证:与相切;(3)若,,求的半径.【答案】(1)证明见解析(2)证明见解析(3)【分析】(1)先证明,,再证明,可得,,再进一步解答即可;(2)如图,连接,证明,可得过圆心,结合,证明,从而可得结论;(3)如图,过作于,连接,设,则,可得,求解,可得,求解,设半径为,可得,再利用勾股定理求解即可.【详解】(1)证明:∵点D,E分别是,的中点,∴,,又∵,,∴,∴,,∴,,∴四边形是平行四边形;(2)证明:如图,连接,∵,为中点,∴,∴过圆心,∵,∴,而为半径,∴为的切线;(3)解:如图,过作于,连接,∵,∴,设,则,∴,∴,∴,∴,∴,∴,∵,,,∴,∴,设半径为,∴,∴,解得:,∴的半径为.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,勾股定理的应用,平行四边形的判定与性质,切线的判定,垂径定理的应用,做出合适的辅助线是解本题的关键.28.(2024·黑龙江齐齐哈尔·中考真题)如图,内接于,为的直径,于点D,将沿所在的直线翻折,得到,点D的对应点为E,延长交的延长线于点F.(1)求证:是的切线;(2)若,,求图中阴影部分的面积.【答案】(1)见解析(2)【分析】(1)连接,由折叠的性质得,,再证明,推出,据此即可证明是的切线;(2)先求得,在中,求得,再利用扇形面积公式求解即可.【详解】(1)证明:连接,∵,∴,∵沿直线翻折得到,∴,,∵是的半径,∴,∴,∴,∴,∴,∴于点C,又∵为的半径,∴是的切线;(2)解:∵,∴,由(1)得,∴,∵,∴,∵,∴,在中,,∴,∴,∴,∴.【点睛】本题考查了切线的判定与扇形面积公式,折叠的性质,解直角三角形.充分运用圆的性质,综合三角函数相关概念,求得线段长度是解题的关键.29.(2024·湖北武汉·中考真题)如图,为等腰三角形,是底边的中点,腰与半圆相切于点,底边与半圆交于,两点.(1)求证:与半圆相切;(2)连接.若,,求的值.【答案】(1)见解析(2)【分析】本题考查了等腰三角形三线合一,角平分线的判定与性质,解直角三角形,熟练掌握以上知识点是解题的关键.(1)连接、,作交于,根据等腰三角形三线合一可知,,平分,结合与半圆相切于点,可推出,得证;(2)由题意可得出,根据,在中利用勾股定理可求得的长度,从而得到的长度,最后根据即可求得答案.【详解】(1)证明:连接、,作交于,如图为等腰三角形,是底边的中点,平分与半圆相切于点由是半圆的切线(2)解:由(1)可知,,,又,在中,,,解得:30.(2024·北京·中考真题)如图,是的直径,点,在上,平分.

(1)求证:;(2)延长交于点,连接交于点,过点作的切线交的延长线于点.若,,求半径的长.【答案】(1)见解析(2)【分析】(1)根据题意,得,结合,得到,继而得到,根据平分,得到,继而得到,可证;(2)不妨设,则,求得,证明,,求得,取的中点M,连接,则,求得,,结合切线性质,得到,解答即可.【详解】(1)根据题意,得,∵,∴,∴,∵平分,∴,∴,∴;(2)∵,,不妨设,则,∴,∵,∴,,∴,∴,解得,取的中点M,连接,则∵,∴,∴,∴,∵是的切线,∴,∴,解得,故半径的长为.

【点睛】本题考查了圆的性质,等腰三角形的性质,平行线的判定,三角形相似的判定和性质,切线的性质,解直角三角形的相关计算,等量代换思想,熟练掌握三角形相似的判定和性质,切线的性质,解直角三角形的相关计算是解题的关键.31.(2024·湖南·中考真题)【问题背景】已知点A是半径为r的上的定点,连接,将线段绕点O按逆时针方向旋转得到,连接,过点A作的切线l,在直线l上取点C,使得为锐角.【初步感知】(1)如图1,当时,;【问题探究】(2)以线段为对角线作矩形,使得边过点E,连接,对角线,相交于点F.①如图2,当时,求证:无论在给定的范围内如何变化,总成立:②如图3,当,时,请补全图形,并求及的值.【答案】(1);①证明见解析;②补全图形见解析,,【分析】(1)可证是等边三角形,则,由直线l是的切线,得到,故;(2)①根据矩形的性质与切线的性质证明,则,而,由,得到;②过点O作于点G,于点H,在中,先证明点E在线段上,,由等腰三角形的性质得,根据互余关系可得,可求,解,求得,可证明,故在中,.【详解】解:(1)由题意得,∵,∴是等边三角形,∴,∵直线l是的切线,∴,∴,故答案为:;(2)①如图:∵,∴,∵,∴,∴,∵,∴,∵四边形是矩形,∴,,∴,∴,∵,∴,∵,∴,∴,∵四边形是矩形,∴,∵,∴;②补全图形如图:过点O作于点G,于点H,在中,,∴由勾股定理得,∵,∴,∴,∴点E在线段上,∴在,,∵,,∴,∵,∴,∴,在中,,∴设,∴由勾股定理得,∴,∴在中,∵四边形是矩形,∴,∴,而,∴,∴在中,.【点睛】本题考查了圆的切线的性质,等腰三角形的性质,全等三角形的判定与性质,矩形的性质,解直角三角形,勾股定理,熟练掌握知识点,正确添加辅助线是解决本题的关键.32.(2024·黑龙江绥化·中考真题)如图1,是正方形对角线上一点,以为圆心,长为半径的与相切于点,与相交于点.(1)求证:与相切.(2)若正方形的边长为,求的半径.(3)如图2,在(2)的条件下,若点是半径上的一个动点,过点作交于点.当时,求的长.【答案】(1)证明见解析(2)(3)【分析】(1)方法一:连接,过点作于点,四边形是正方形,是正方形的对角线,得出,进而可得为的半径,又,即可得证;方法二:连接,过点作于点,根据正方形的性质证明得出,同方法一即可得证;方法三:过点作于点,连接.得出四边形为正方形,则,同方法一即可得证;(2)根据与相切于点,得出,由(1)可知,设,在中,勾股定理得出,在中,勾股定理求得,进而根据建立方程,解方程,即可求解.(3)方法一:连接,设,在中,由勾股定理得:,在中,由勾股定理得:,结合题意得出,即可得出;方法二:连接,证明得出,进而可得,同理可得方法三:连接,证明得出,设,则,进而可得,进而同方法一,即可求解.【详解】(1)方法一:证明:连接,过点作于点,与相切于点,.四边形是正方形,是正方形的对角线,,,为的半径,为的半径,,与相切.方法二:证明:连接,过点作于点,与相切于点,,,四边形是正方形,,又,,,为的半径,为的半径,,与相切.方法三:证明:过点作于点,连接.与相切,为半径,,,,,又四边形为正方形,,四边形为矩形,又为正方形的对角线,,,矩形为正方形,.又为的半径,为的半径,又,与相切.(2)解:为正方形的对角线,,与相切于点,,由(1)可知,设,在中,,,,,又正方形的边长为.在中,,,,.∴的半径为.(3)方法一:解:连接,设,,,,.在中,由勾股定理得:,在中,由勾股定理得:,又,..方法二:解:连接,为的直径,,,,,,,,,,,,,,.方法三:解:连接,为的直径,,,,,,,,,,,,设,则,,.又,,.【点睛】本题考查了切线的性质与判定,正方形的性质,全等三角形的性质与判定,勾股定理,垂径定理,相似三角形的性质与判定,正确的添加辅助线是解题的关键.33.(2024·北京·中考真题)在平面直角坐标系中,的半径为1,对于的弦和不在直线上的点,给出如下定义:若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”.(1)如图,点,.①在点,,中,点___________是弦的“可及点”,其中____________;②若点是弦的“可及点”,则点的横坐标的最大值为__________;(2)已知是直线上一点,且存在的弦,使得点是弦的“可及点”.记点的横坐标为,直接写出的取值范围.【答案】(1)①,45;②(2)或【分析】(1)由相对运动理解,作出关于的对称圆,若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”,则点C应在的圆内或圆上,先求得,根据点与圆的位置关系的判断方法分别判断即可得出在上,故符合题意,根据圆周角定理即可求解;②取中点为H,连接,可确定点D在以H为圆心,为半径的上方半圆上运动(不包括端点A、B),当轴时,点D横坐标最大,可求,故点的横坐标的最大值为;(2)反过来思考,由相对运动理解,作出关于的对称圆,故点P需要在的圆内或圆上,作出的外接圆,连接,则点P在以为圆心,为半径的上运动(不包括端点M、N),可求,随着的增大,会越来越靠近,当点与点重合时,点P在上,即为临界状态,此时最大,,由,故当最大,时,此时为等边三角形,此时,故当,的最大值为2,设,则,解得:,可求直线与交于点,,故t的取值范围是或.【详解】(1)解:①:反过来思考,由相对运动理解,作出关于的对称圆,∵若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”,∴点C应在的圆内或圆上,∵点,,∴,而,∴,由对称得:,∴为等腰直角三角形,∴,设半径为,则,故在外,不符合题意;,故在上,符合题意;,故在外,不符合题意,∴点是弦的“可及点”,可知三点共线,∵,∴,故答案为:,45;②取中点为H,连接,∵,∴,∴点D在以H为圆心,为半径的上方半圆上运动(不包括端点A、B),∴当点轴时,点D横坐标最大,∵,,∴,∴,∵点,,∴,∴此时,∴点的横坐标的最大值为,故答案为:;(2)解:反过来思考,由相对运动理解,作出关于的对称圆,∵若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”,∴点C应在的圆内或圆上,故点P需要在的圆内或圆上,作出的外接圆,连接,∴点P在以为圆心,为半径的上运动(不包括端点M、N),∴,∴,由对称得点在的垂直平分线上,∵的外接圆为,∴点也在的垂直平分线上,记与交于点Q,∴,∴,随着的增大,会越来越靠近,当点与点重合时,点P在上,即为临界状态,此时最大,,连接,∵,∴当最大,时,此时为等边三角形,由上述过程知∴,∴当,的最大值为2,设,则,解得:,而记直线与交于,与y轴交于点K,过点S作轴,当,当时,,解得,∴与x轴交于点,∴,而∴为等边三角形,∴,∴,∴,∴t的取值范围是或.【点睛】本题考查了新定义,轴对称变换,点与圆的位置关系,圆周角定理,解直角三角形,一次函数与坐标轴的交点问题,已知两点求距离等知识点,正确添加辅助线,找到临界状态情况是解题的关键.34.(2024·广东广州·中考真题)如图,在菱形中,.点在射线上运动(不与点,点重合),关于的轴对称图形为.(1)当时,试判断线段和线段的数量和位置关系,并说明理由;(2)若,为的外接圆,设的半径为.①求的取值范围;②连接,直线能否与相切?如果能,求的长度;如果不能,请说明理由.【答案】(1),(2)①且;②能,【分析】(1)由菱形的性质可得,,再结合轴对称的性质可得结论;(2)①如图,设的外接圆为,连接交于.连接,,,,证明为等边三角形,共圆,,在上,,过作于,当时,最小,则最小,再进一步可得答案;②如图,以为圆心,为半径画圆,可得在上,延长与交于,连接,证明,可得,为等边三角形,证明,可得:,,过作于,再进一步可得答案.【详解】(1)解:,;理由如下:∵在菱形中,,∴,,∵,∴,∴,由对折可得:,∴;(2)解:①如图,设的外接圆为,连接交于.连接,,,,∵四边形为菱形,,∴,,,∴为等边三角形,∴,∴共圆,,在上,∵,∴,过作于,∴,,∴,当时,最小,则最小,∵,,∴,∴;点E不与B、C重合,,且,∴的取值范围为且;②能为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论