版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江市新区重点中学2023-2024学年中考数学对点突破模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.如图图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A.a+a=2a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a73.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10104.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°5.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20m/s和v(m/s),起初甲车在乙车前a(m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y(m),y与x的函数关系如图2所示.有以下结论:①图1中a的值为500;②乙车的速度为35m/s;③图1中线段EF应表示为;④图2中函数图象与x轴交点的横坐标为1.其中所有的正确结论是()A.①④ B.②③C.①②④ D.①③④6.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A.2 B.2 C. D.47.对于函数y=,下列说法正确的是()A.y是x的反比例函数 B.它的图象过原点C.它的图象不经过第三象限 D.y随x的增大而减小8.3点40分,时钟的时针与分针的夹角为()A.140° B.130° C.120° D.110°9.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A. B.C. D.10.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条 B.6条 C.8条 D.9条二、填空题(本大题共6个小题,每小题3分,共18分)11.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.12.函数y=1x-1的自变量x的取值范围是13.写出一个比大且比小的有理数:______.14.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.15.计算=_____.16.如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为_____.三、解答题(共8题,共72分)17.(8分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.18.(8分)(1)解方程:=0;(2)解不等式组,并把所得解集表示在数轴上.19.(8分)如图,在四边形ABCD中,∠A=∠BCD=90°,,CE⊥AD于点E.(1)求证:AE=CE;(2)若tanD=3,求AB的长.20.(8分)如图,抛物线经过点A(﹣2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.21.(8分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?22.(10分)已知关于的方程有两个实数根.求的取值范围;若,求的值;23.(12分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?24.如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=°;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】A.是轴对称图形,是中心对称图形,故本选项正确;B.是中心对称图,不是轴对称图形,故本选项错误;C.不是中心对称图,是轴对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误。故选A.2、A【解析】
根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C.,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.3、D【解析】
根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.4、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.5、A【解析】分析:①根据图象2得出结论;②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论;③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得:,解得,∴y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.6、B【解析】分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.详解:如图所示,连接OC、OB
∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.7、C【解析】
直接利用反比例函数的性质结合图象分布得出答案.【详解】对于函数y=,y是x2的反比例函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C.【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.8、B【解析】
根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:3点40分时针与分针相距4+=份,30°×=130,故选B.【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题关键.9、A【解析】
当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F在MD上运动时,0≤x<2,则:y=S梯形ECDG-S△EFC-S△GDF=,当点F在DA上运动时,2<x≤4,则:y=,综上,只有A选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.10、D【解析】
多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有(6×3)=9条,故选:D.【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2.1.【解析】
根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题.【详解】由题意可得,甲车到达C地用时4个小时,乙车的速度为:200÷(3.1﹣1)=80km/h,乙车到达A地用时为:(200+240)÷80+1=6.1(小时),当乙车到达A地时,甲车已在C地休息了:6.1﹣4=2.1(小时),故答案为:2.1.【点睛】本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12、x>1【解析】依题意可得x-1>0,解得x>1,所以函数的自变量x的取值范围是x>113、2【解析】
直接利用接近和的数据得出符合题意的答案.【详解】解:到之间可以为:2(答案不唯一),故答案为:2(答案不唯一).【点睛】此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.14、51.【解析】∵一组数据:3,a,4,6,7,它们的平均数是5,∴,解得,,∴=1.故答案为5,1.15、0【解析】分析:先计算乘方、零指数幂,再计算加减可得结果.详解:1-1=0故答案为0.点睛:零指数幂成立的条件是底数不为0.16、1【解析】
根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.【详解】∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周长为:3×4=1,故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.三、解答题(共8题,共72分)17、(1)2;(2);(3)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y=-x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP=-m²+m+,根据解析式即可求得,△MPF面积的最大值;(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F(0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当KF′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.18、(1)x=;(2)x>3;数轴见解析;【解析】
(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式组的解集为x>3,在数轴上表示为:.【点睛】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.19、(1)见解析;(2)AB=4【解析】
(1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.【详解】(1)证明:过点B作BH⊥CE于H,如图1.∵CE⊥AD,∴∠BHC=∠CED=90°,∠1+∠D=90°.∵∠BCD=90°,∴∠1+∠2=90°,∴∠2=∠D.又BC=CD∴△BHC≌△CED(AAS).∴BH=CE.∵BH⊥CE,CE⊥AD,∠A=90°,∴四边形ABHE是矩形,∴AE=BH.∴AE=CE.(2)∵四边形ABHE是矩形,∴AB=HE.∵在Rt△CED中,,设DE=x,CE=3x,∴.∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.20、(1);(2)P(1,);(3)3或5.【解析】
(1)将点A、B代入抛物线,用待定系数法求出解析式.(2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.(3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.【详解】解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)∴,解得,∴抛物线解析式为,(2),∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)设新抛物线的表达式为则,,DE=2过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF∴,∴FH=1.点D在y轴的正半轴上,则,∴,∴,∴m=3,点D在y轴的负半轴上,则,∴,∴,∴m=5,∴综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.21、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.【解析】
(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨.构建方程组即可解决问题.(2)设精加工x吨,利润为w元,则粗加工(100-x)吨.利润w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解决问题.【详解】(1)设第一次购进a吨,第二次购进b吨,,解得,答:第一次购进40吨,第二次购进160吨;(2)设精加工x吨,利润为w元,w=800x+400(200﹣x)=400x+80000,∵x≤3(200﹣x),解得,x≤150,∴当x=150时,w取得最大值,此时w=1,答:为获得最大利润,精加工数量应为150吨,最大利润是1.【点睛】本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.22、(1);(2)k=-3【解析】
(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【详解】解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合题意,舍去②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 15314-2024精密工程测量规范
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷带答案(夺分金卷)
- 沥青混凝土运输协议(35篇)
- 农村丧事礼仪主持词
- 讲文明懂礼貌演讲稿600字(35篇)
- 2024年三人联合承包石油化工工程合同2篇
- 设备购销合同格式示例
- 设计服务合同印花税的办理流程及指南
- 诚信在诉讼中的承诺
- 货物运输安全合作协议
- 2023-2024学年成都市锦江区九年级上英语(一诊)期末考试题(含答案)
- DB37T 5235-2022 建筑施工附着式升降脚手架安全技术管理规程
- 一国两制课件
- 2024年蜀道集团招聘笔试参考题库含答案解析
- 年化妆品原料行业市场研究报告
- 量子随机数生成器
- 小沟小学 国有资产管理内部控制流程图
- 家政公司和社区合作协议
- 第39课+眼鏡をかけて本を読みます+-高中日语新版标准日本语初级下册
- 高三化学二轮复习高考陌生化学方程式的书写课件
- 道德与法治三上第三单元安全护我成长 单元作业设计
评论
0/150
提交评论