版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2024年山东省济宁市兖州区中考数学二模试卷一、选择题:本大题共10道小题,每小题3分,共30分.每小题给出的四个选项中,只有一项符合题目要求。1.(3分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<﹣2 B.b<1 C.﹣a>b D.a>b2.(3分)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥 B.圆柱 C.棱锥 D.棱柱3.(3分)不等式组的解集在数轴上表示为()A. B. C. D.4.(3分)如图为商场某品牌椅子的侧面图,∠DEF=118°,DE与地面平行,则∠ACB=()A.72° B.69° C.49° D.31°5.(3分)下列运算结果正确的是()A.x3•x3=x9 B.2x3+3x3=5x6 C.(2x2)3=6x6 D.(2+3x)(2﹣3x)=4﹣9x26.(3分)若关于x的分式方程+1=的解为非负数()A.m≤1且m≠﹣1 B.m≥﹣1且m≠1 C.m<1且m≠﹣1 D.m>﹣1且m≠17.(3分)如图,将线段AB先向左平移,使点B与原点O重合,则点A的对应点A′的坐标是()A.(2,﹣3) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)8.(3分)已知点A(3,y1),B(﹣2,y2),C(﹣1,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y3<y2<y1 B.y1<y3<y2 C.y1<y2<y3 D.y2<y3<y19.(3分)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次(阴影部分)的概率是()A. B. C. D.10.(3分)如图,在反比例函数的图象上有P1,P2,P3…P2024等点,它们的横坐标依次为1,2,3,…,2024,图中所构成的阴影部分的面积从左到右依次为s1,s2,s3…,s2023,则s1+s2+s3+…+s2023的值为()A.1 B.2024 C. D.二、填空题:本大题共5道小题,每小题3分,满分共15分,要求只写出最后结果。11.(3分)要使二次根式有意义,则x的取值范围是.12.(3分)如图,在△ABC中,以点C为圆心,分别交AC,BC于点D,E,E为圆心,大于,两弧交于点F;作射线CF交AB于点G,BC=7,△BCG的面积为14.13.(3分)现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为.14.(3分)新定义:函数图象上任意一点P(x,y),y﹣x称为该点的“坐标差”,函数图象上所有点的“坐标差”的最大值称为该函数的“特征值”.一次函数y=2x+3(﹣2≤x≤1).15.(3分)如图,△ABC中,AB=AC,射线CP从射线CA开始绕点C逆时针旋转α角(0°<α<70°),与AB相交于点D,CA'与AB相交于点E.若△A′DE是等腰三角形,则∠α的度数为.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤。16.(5分)先化简,再求值:,其中m满足m2+3m﹣5=0.17.(8分)为增强学生国家安全意识,夯实国家安全教育基础、某校举行国家安全知识竞赛.竞赛结束后,对所有参赛学生的成绩(满分100分)(成绩得分用a表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,100,94,98,则这8个数据的中位数是,众数是;(3)若该校共有1200人,能否估计该校学生对国家安全知识掌握程度达到优秀的人数?(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的安全知识竞赛,求恰好抽中2名女生参加知识竞赛的概率.18.(8分)如图,在矩形ABCD中,AB=13,E是AD边上的一点,将△ABE沿着BE折叠,连接BF.(1)求证:△EFD∽△FBC;(2)求tan∠AFB的值.19.(8分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,,,连接CF并延长,交⊙O于点D,作BE⊥CD,垂足为E.(1)求证:△DBE∽△ABC;(2)若AF=4,求ED的长.20.(8分)如图,一次函数y=kx+b(k≠0)的图象与x轴、y轴分别相交于C、B两点的图象相交于点A,OB=2,BC:CA=1:2.(1)求反比例函数的表达式;(2)点D是线段AB上任意一点,过点D作y轴平行线,交反比例函数的图象于点E,求点D的坐标.21.(8分)P为△ABC内一点,连接PA,PB,在△PAB、△PBC和△PAC中,如果存在两个三角形相似【概念理解】(1)如图①,在△ABC中,∠A=60°,P是△ABC的内相似点.直接写出∠BPC的度数.【深入思考】(2)如图②,P是△ABC内一点,连接PA,PC,∠BPC=2∠BAC,使P是△ABC的内相似点,并给出证明.①∠APB=∠APC;②∠PAC=∠PBA;③AP2=BP•CP.22.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象经过点A(0,2),点B=(﹣1,0).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=﹣x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,且线段PQ的长度随m的增大而增大.求m的取值范围.
2024年山东省济宁市兖州区中考数学二模试卷参考答案与试题解析一、选择题:本大题共10道小题,每小题3分,共30分.每小题给出的四个选项中,只有一项符合题目要求。1.(3分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<﹣2 B.b<1 C.﹣a>b D.a>b【解答】解:根据图形可以得到:﹣2<a<0<6<b<2;所以:A、B、D都是错误的;故选:C.2.(3分)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥 B.圆柱 C.棱锥 D.棱柱【解答】解:∵圆锥的侧面展开图是扇形,∴判断这个几何体是圆锥,故选:A.3.(3分)不等式组的解集在数轴上表示为()A. B. C. D.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,∴原不等式组的解集为:﹣3≤x<3,∴该不等式组的解集在数轴上表示如图所示:故选:B.4.(3分)如图为商场某品牌椅子的侧面图,∠DEF=118°,DE与地面平行,则∠ACB=()A.72° B.69° C.49° D.31°【解答】解:∵DE∥AB,∴∠D=∠ABD=49°,∵∠DEF=118°,∴∠DCE=118°﹣49°=69°,∴∠ACB=∠DCE=69°.故选:B.5.(3分)下列运算结果正确的是()A.x3•x3=x9 B.2x3+3x3=5x6 C.(2x2)3=6x6 D.(2+3x)(2﹣3x)=4﹣9x2【解答】解:A.x3•x3=x7,则A不符合题意;B.2x3+5x3=5x5,则B不符合题意;C.(2x2)3=8x6,则C不符合题意;D.(2+3x)(2﹣6x)=22﹣(8x)2=4﹣4x2,则D符合题意;故选:D.6.(3分)若关于x的分式方程+1=的解为非负数()A.m≤1且m≠﹣1 B.m≥﹣1且m≠1 C.m<1且m≠﹣1 D.m>﹣1且m≠1【解答】解:+1=,两边同乘(x﹣1),去分母得:x+x﹣1=﹣m,移项,合并同类项得:2x=1﹣m,系数化为1得:x=,∵原分式方程的解为非负数,∴≥0,且解得:m≤1且m≠﹣1,故选:A.7.(3分)如图,将线段AB先向左平移,使点B与原点O重合,则点A的对应点A′的坐标是()A.(2,﹣3) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)【解答】解:如图,由题意可知,点A(0,B(2,由平移的性质得:A''(﹣5,3),0),由旋转的性质得:点A'与A''关于原点对称,∴A′(2,﹣3),故选:A.8.(3分)已知点A(3,y1),B(﹣2,y2),C(﹣1,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y3<y2<y1 B.y1<y3<y2 C.y1<y2<y3 D.y2<y3<y1【解答】解:∵反比例函数的图象分布在第二四象限,y随x增大而增大,∴y3>y7>0>y1,故选:C.9.(3分)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次(阴影部分)的概率是()A. B. C. D.【解答】解:∵总面积为5×6=30,其中阴影部分面积为=,∴飞镖落在阴影部分的概率是=,故选:A.10.(3分)如图,在反比例函数的图象上有P1,P2,P3…P2024等点,它们的横坐标依次为1,2,3,…,2024,图中所构成的阴影部分的面积从左到右依次为s1,s2,s3…,s2023,则s1+s2+s3+…+s2023的值为()A.1 B.2024 C. D.【解答】解:∵P1,P2,P6…P2024的横坐标依次为1,2,5,…,2024,∴P1,P2,P4…P2024的纵坐标坐标依次为,,,•••,,∵图中每个小矩形的水平边长为1,纵向边长等于相邻两点的纵坐标之差,∴S7=1×(1﹣)=,S8=1×()=,S3=1×()=,••••••,S2023=1×(),∴S1+S8+S3+•••S2023=1﹣+++•••+=.故选:D.二、填空题:本大题共5道小题,每小题3分,满分共15分,要求只写出最后结果。11.(3分)要使二次根式有意义,则x的取值范围是x≥﹣2.【解答】解:∵二次根式有意义,∴6x+12≥5,解得x≥﹣2.故答案为:x≥﹣2.12.(3分)如图,在△ABC中,以点C为圆心,分别交AC,BC于点D,E,E为圆心,大于,两弧交于点F;作射线CF交AB于点G,BC=7,△BCG的面积为1420.【解答】解:如图,过点G作GM⊥AC于点M.由作图可知CG平分∠ACB,∵GM⊥AC,GN⊥BC,∴GM=GN,∵S△BCG=•BC•GN=14,∴GN=2,∴GN=GM=4,∴S△AGC=•AC•GM=,故答案为:20.13.(3分)现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为18°.【解答】解:20π=解得:n=90°,∵扇形彩纸片是30%圆周,因而圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣90°=18°.剪去的扇形纸片的圆心角为18°.故答案为18°.14.(3分)新定义:函数图象上任意一点P(x,y),y﹣x称为该点的“坐标差”,函数图象上所有点的“坐标差”的最大值称为该函数的“特征值”.一次函数y=2x+3(﹣2≤x≤1)4.【解答】解:∵一次函数y=2x+3(﹣4≤x≤1),∴当x=﹣2时,y=﹣5,当x=1时,y=5,∵2>1,∴该函数的“特征值”为4.故答案为:3.15.(3分)如图,△ABC中,AB=AC,射线CP从射线CA开始绕点C逆时针旋转α角(0°<α<70°),与AB相交于点D,CA'与AB相交于点E.若△A′DE是等腰三角形,则∠α的度数为15°或30°或60°.【解答】解:当点A′在AB下方时,由翻折可知,∠A′=∠A=40°,∠A′CD=∠ACD=α,∴∠DEA′=∠A+∠ACA′=40°+2α,∴∠A′DE=180°﹣40°﹣(40°+2α)=100°﹣7α.当A′D=A′E时,∠A′DE=∠DEA′,∴100﹣2α=40°+2α,解得α=15°.当DA′=DE时,∠DA′E=∠DEA′,∴40°=40°+8α,解得α=0°(舍去).当ED=EA′时,∠EA′D=∠EDA′,∴40°=100°﹣2α,解得α=30°.当点A′在AB上方时,由旋转可知,∠CA′D=∠A=40°,∠A′CD=∠ACD=α,∴∠DA′E=180°﹣40°=140°,∠A′DE=180°﹣5(140°﹣α)=2α﹣100°,∴∠A′ED=180°﹣140°﹣(2α﹣100°)=140°﹣3α.当A′D=A′E时,∠A′DE=∠A′ED,∴2α﹣100°=140°﹣2α,解得α=60°.当DA′=DE时,∠DA′E=∠DEA′,∴140°=140°﹣7α,∴α=0°(舍去).当ED=EA′时,∠EDA′=∠EA′D,∴2α﹣100°=140°,解得α=120°(舍去).综上所述,∠α的度数为:15°或30°或60°.故答案为:15°或30°或60°.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤。16.(5分)先化简,再求值:,其中m满足m2+3m﹣5=0.【解答】解:===3m(m+6)=3(m2+5m),∵m满足m2+3m﹣7=0,即m2+6m=5,∴原式=3×2=15.17.(8分)为增强学生国家安全意识,夯实国家安全教育基础、某校举行国家安全知识竞赛.竞赛结束后,对所有参赛学生的成绩(满分100分)(成绩得分用a表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,100,94,98,则这8个数据的中位数是95,众数是94;(3)若该校共有1200人,能否估计该校学生对国家安全知识掌握程度达到优秀的人数?(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的安全知识竞赛,求恰好抽中2名女生参加知识竞赛的概率.【解答】解:(1)由题意可知,参赛学生的总人数为:4÷8%=50(人),∴70≤a<80的人数为:50﹣4﹣23﹣8=15(人),将直方图补充完整如下:(2)∵90≤a≤100这组的具体成绩为93,94,91,94,98,∴把90≤a≤100这组的具体成绩排序为:91,93,94,98,100,∴这8个数据的中位数是=95,众数为94,故答案为:95,94;(3)由题意可知,1200×,答:估计该校学生对国家安全知识掌握程度达到优秀的人数为192人;(4)画树状图如下:共有12种等可能的结果,其中恰好抽中2名女生参加知识竞赛的有4种结果,∴恰好抽中2名女生参加知识竞赛的概率为=.18.(8分)如图,在矩形ABCD中,AB=13,E是AD边上的一点,将△ABE沿着BE折叠,连接BF.(1)求证:△EFD∽△FBC;(2)求tan∠AFB的值.【解答】(1)证明:∵四边形ABCD是矩形,∠BAD=∠D=∠C=90°,由折叠可知:∠BFE=∠DAB=90°,∴∠EFD+∠BFC=∠EFD+∠FED=90°,∴∠BFC=∠FED,∴△EFD∽△FBC;(2)解:由折叠可知:BF=AB=13,在Rt△BFC中,BC=12,∴CF==6,∴FD=CD﹣CF=13﹣5=8,∴tan∠AFD===,由折叠可知:∠AFB=∠FAB,∵AB∥CD,∴∠AFD=∠FAB,∴∠AFD=∠AFB,∴tan∠AFB=.19.(8分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,,,连接CF并延长,交⊙O于点D,作BE⊥CD,垂足为E.(1)求证:△DBE∽△ABC;(2)若AF=4,求ED的长.【解答】(1)证明:∵AB是⊙O的直径,BE⊥CD,∴∠ACB=90°=∠BED,∵∠CAB=∠CDB,∴△DBE∽△ABC.(2)解:∵AC=2,BC=5,∴AB==10=,∵AF=7,∴BF=6,∵△DBE∽△ABC,∴∠ABC=∠DBE,∴tan∠ABC=tan∠DBE==,设DE=x,则BE=2xx,∵∠AFC=∠BFD,∠CAB=∠CDB,∴△ACF∽△DBF,∴==,∴=,则DF=2x,∴EF=x=DE,∴BD=BF=6,则x=6,∴x=,∴DE=.20.(8分)如图,一次函数y=kx+b(k≠0)的图象与x轴、y轴分别相交于C、B两点的图象相交于点A,OB=2,BC:CA=1:2.(1)求反比例函数的表达式;(2)点D是线段AB上任意一点,过点D作y轴平行线,交反比例函数的图象于点E,求点D的坐标.【解答】解:(1)如图,过点A作AF⊥x轴于点F,∴AF∥y轴,∴△ACF∽△BCO,∴BC:AC=OB:AF=OC:CF=1:2.∵OB=8,tan∠OBC=2,∴OC=2,∴AF=6,CF=4,∴OF=OC+CF=6,∴A(6,2).∵点A在反比例函数y=(m≠0,∴m=3×6=12.∴反比例函数的表达式为:y=(x>0).(2)由题意可知,B(7,∴直线AB的解析式为:y=x﹣6.设点D的横坐标为t,则D(t,t﹣8),).∴ED=﹣t+5.∴△BDE的面积为:(t﹣4)(﹣t+8)=﹣t3+t+3=﹣(t﹣2)2+.∵﹣<0,∴t=6时,△BDE的面积的最大值为,﹣).21.(8分)P为△ABC内一点,连接PA,PB,在△PAB、△PBC和△PAC中,如果存在两个三角形相似【概念理解】(1)如图①,在△ABC中,∠A=60°,P是△ABC的内相似点.直接写出∠BPC的度数.【深入思考】(2)如图②,P是△ABC内一点,连接PA,PC,∠BPC=2∠BAC,使P是△ABC的内相似点,并给出证明.①∠APB=∠APC;②∠PAC=∠PBA;③AP2=BP•CP.【解答】解:(1)∠BAC=60°,∠ABC=80°,∴∠ACB=180°﹣∠BAC﹣∠ABC=40°,∴∠BAP+∠PAC=∠BAC=60°,∠ABP+∠PBC=∠ABC=80°,△PAB∽△PBC,则∠PAB=∠PBC,∠APB=∠BPC,∴∠PAB+∠PBC+∠PBA+∠PCB=2(∠PBC+∠PBA)=2∠ABC=160°,∴∠BPC=∠APB=;△PAC∽△PCB,则∠PAC=∠PCB,∠APC=∠BPC,∴∠PAC+∠PCB+∠PCA+∠PBC=2(∠PCA+∠PCB)=2∠ACB=80°,∴∠BPC=∠APC=;△PAB∽△PCA,则∠PAB=∠PCA,∠APB=∠APC,∴∠PAB+∠PCA+∠PBA+∠PAC=2(∠PAB+∠PAC)=2∠BAC=120°,∴∠APC+∠APB=360°﹣120°=240°,∴∠BPC=360°﹣(∠APC+∠APB)=120°,综上所述,∠BPC的度数为100°或140°或120°.(2)选①∠APB=∠APC,证明如下:如图,延长AP得到射线AD,∵∠APB=∠APC,∴180°﹣∠APB=180°﹣∠APC,∴∠BPD=∠CPD,∵∠BPD+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国弯柄撬棒梅花扳手行业投资前景及策略咨询研究报告
- 2024至2030年中国封闭蹦床海洋球池行业投资前景及策略咨询研究报告
- 2024至2030年中国干熄焦旋转热焦罐车数据监测研究报告
- 2024至2030年中国冷光源普外科深部手术器械包行业投资前景及策略咨询研究报告
- 2024至2030年中国不锈钢万能夹行业投资前景及策略咨询研究报告
- 2024年中国抽屉式开关柜框市场调查研究报告
- 2024八年级数学上册第12章一次函数12.2一次函数第1课时认识一次函数习题课件新版沪科版
- 2024年嘉峪关道路客运输从业资格证理论考题
- 2024年清远道路旅客运输从业资格考试
- 营养美食牛奶鸡蛋食物活动模板
- 国家执业医师资格考试题库(针灸学)
- 茅台红酒推销文案策划案例
- 期中达标测试卷(试题)-2024-2025学年统编版(2024)语文一年级上册
- 2024年地质矿产勘测行业技能鉴定考试-地质录井技能考试近5年真题集锦(频考类试题)带答案
- 九上道德与法治期中复习提纲(知识梳理)(全册)
- DB53∕T 1269-2024 改性磷石膏用于矿山废弃地生态修复回填技术规范
- 心衰健康宣教课件
- 机电材料见证取样复试
- 《小学数学计算能力的培养》学习课件
- 浅谈国家中小学智慧教育平台资源在小学语文教学中的应用
- 小学二年级心理快乐好心情课件
评论
0/150
提交评论