版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A. B. C. D.2.如图,点()是反比例函数上的动点,过分别作轴,轴的垂线,垂足分别为,.随着的增大,四边形的面积()A.增大 B.减小 C.不确定 D.不变3.二次函数(是常数,)的自变量与函数值的部分对应值如下表:…012………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0 B.1 C.2 D.34.关于的一元二次方程有实数根,则满足()A. B.且 C.且 D.5.如图所示,在中,与相交于点,为的中点,连接并延长交于点,则与的面积比值为()A. B. C. D.6.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米 B.6米 C.8米 D.(3+)米7.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是()A. B. C. D.8.对于一元二次方程来说,当时,方程有两个相等的实数根:若将的值在的基础上减小,则此时方程根的情况是()A.没有实数根 B.两个相等的实数根C.两个不相等的实数根 D.一个实数根9.关于x的一元二次方程有两个实数根,则k的取值范围在数轴上可以表示为()A. B.C. D.10.下列图形中,是相似形的是()A.所有平行四边形 B.所有矩形 C.所有菱形 D.所有正方形二、填空题(每小题3分,共24分)11.如图,,,,分别是正方形各边的中点,顺次连接,,,.向正方形区域随机投掷一点,则该点落在阴影部分的概率是_______.12.已知在平面直角坐标系中,点在第二象限,且到轴的距离为3,到轴的距离为4,则点的坐标为______.13.二次函数y=x2-2x+1的对称轴方程是x=_______.14.将抛物线向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为_________________.15.如图,矩形中,,,是边上的一点,且,点在矩形所在的平面中,且,则的最大值是_________.16.如图,已知点A在反比例函数图象上,AC⊥y轴于点C,点B在x轴的负半轴上,且△ABC的面积为3,则该反比例函数的表达式为__.17.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=__.18.计算_________.三、解答题(共66分)19.(10分)如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于E.(1)求证DE⊥BC;(2)若⊙O的半径为5,BE=2,求DE的长度.20.(6分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a,b),其中第一枚骰子的点数记为a,第二枚骰子的点数记为b.(1)用列举法或树状图法求(a,b)的结果有多少种?(2)求方程x2+bx+a=0有实数解的概率.21.(6分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.22.(8分)如图是一个横断面为抛物线形状的拱桥,当水面宽(AB)为4m时,拱顶(拱桥洞的最高点)离水面2m.当水面下降1m时,求水面的宽度增加了多少?23.(8分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.24.(8分)如图,∠MAN=90°,,分别为射线,上的两个动点,将线段绕点逆时针旋转到,连接交于点.(1)当∠ACB=30°时,依题意补全图形,并直接写出的值;(2)写出一个∠ACB的度数,使得,并证明.25.(10分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).26.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为,种草所需费用(元)与的函数关系式为,其大致图象如图所示.栽花所需费用(元)与的函数关系式为.(1)求出,的值;(2)若种花面积不小于时的绿化总费用为(元),写出与的函数关系式,并求出绿化总费用的最大值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据第三个图形是三角形的特点及折叠的性质即可判断.【详解】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【点晴】此题主要考查矩形的折叠,解题的关键是熟知折叠的特点.2、D【分析】由长方形的面积公式可得出四边形的面积为mn,再根据点Q在反比例函数图象上,可知,从而可判断面积的变化情况.【详解】∵点∴四边形的面积为,∵点()是反比例函数上的动点∴四边形的面积为定值,不会发生改变故选:D.【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数比例系数的几何意义是解题的关键.3、C【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-=;∴a、b异号,且b=-a;∵当x=0时y=c=-2∴c∴abc0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴和3是关于的方程的两个根;故②正确;∵b=-a,c=-2∴二次函数解析式:∵当时,与其对应的函数值.∴,∴a;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4;故③错误故选C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.4、C【分析】根据一元二次方程有实数根得到△且,解不等式求出的取值范围即可.【详解】解:关于的一元二次方程有实数根,△且,△且,且.故选:.【点睛】本题考查了一元二次方程的根的判别式△:当△,方程有两个不相等的实数根;当△,方程有两个相等的实数根;当△,方程没有实数根.5、C【分析】根据平行四边形的性质得到OB=OD,利用点E是OD的中点,得到DE:BE=1:3,根据同高三角形面积比的关系得到S△ADE:S△ABE=1:3,利用平行四边形的性质得S平行四边形ABCD=2S△ABD,由此即可得到与的面积比.【详解】在中,OB=OD,∵为的中点,∴DE=OE,∴DE:BE=1:3,∴S△ADE:S△ABE=1:3,∴S△ABE:S△ABD=1:4,∵S平行四边形ABCD=2S△ABD,∴与的面积比为3:8,故选:C.【点睛】此题考查平行四边形的性质,同高三角形面积比,熟记平行四边形的性质并熟练运用解题是关键.6、A【解析】试题分析:根据CD:AD=1:2,AC=3米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD==8米,则BC=BD-CD=8-3=5米.考点:直角三角形的勾股定理7、C【分析】直接利用概率公式求解即可求得答案.【详解】∵一个学习兴趣小组有2名女生,3名男生,∴女生当组长的概率是:.故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8、C【分析】根据根的判别式,可得答案.【详解】解:a=1,b=-3,c=,
Δ=b2−4ac=9−4×1×=0∴当的值在的基础上减小时,即c﹤,Δ=b2−4ac>0∴一元二次方程有两个不相等的实数根,
故选C.【点睛】本题考查了根的判别式的应用,能熟记根的判别式的内容是解此题的关键.9、B【分析】利用根的判别式和题意得到,求出不等式的解集,最后在数轴上表示出来,即可得出选项.【详解】解:∵关于x的方程有两个实数根,∴,解得:,在数轴上表示为:,故选:B.【点睛】本题考查了在数轴上表示不等式的解集,根的判别式的应用,注意:一元二次方程(为常数)的根的判别式为.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.特别注意:当时,方程有两个实数根,本题主要应用此知识点来解决.10、D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【点睛】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.二、填空题(每小题3分,共24分)11、【分析】根据三角形中位线定理判定阴影部分是正方形,然后按照概率的计算公式进行求解.【详解】解:连接AC,BD∵,,,分别是正方形各边的中点∴,∠HEF=90°∴阴影部分是正方形设正方形边长为a,则∴∴向正方形区域随机投掷一点,则该点落在阴影部分的概率是故答案为:【点睛】本题考查三角形中位线定理及正方形的性质和判定以及概率的计算,掌握相关性质定理正确推理论证是本题的解题关键.12、(-4,3)【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【详解】解:点在第二象限,且到轴的距离为3,到轴的距离为4,点的横坐标为,纵坐标为3,点的坐标为.故答案为.【点睛】本题考查了点的坐标,熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值是解题的关键.13、1【分析】利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.【详解】∵-=-=1,∴x=1.故答案为1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.14、.【解析】∵将抛物线向左平移2个单位,再向上平移1个单位,∴抛物线的顶点(0,0)也同样向左平移2个单位,再向上平移1个单位,得到新抛物线的的顶点(-2,1).∴平移后得到的抛物线的解析式为.15、5+.【分析】由四边形是矩形得到内接于,利用勾股定理求出直径BD的长,由确定点P在上,连接MO并延长,交于一点即为点P,此时PM最长,利用勾股定理求出OM,再加上OP即可得到PM的最大值.【详解】连接BD,∵四边形ABCD是矩形,∴∠BAD=∠BCD=90,AD=BC=8,∴BD=10,以BD的中点O为圆心5为半径作,∵,∴点P在上,连接MO并延长,交于一点即为点P,此时PM最长,且OP=5,过点O作OH⊥AD于点H,∴AH=AD=4,∵AM=2,∴MH=2,∵点O、H分别为BD、AD的中点,∴OH为△ABD的中位线,∴OH=AB=3,∴OM=,∴PM=OP+OM=5+.故答案为:5+.【点睛】此题考查矩形的性质,勾股定理,圆内接四边形的性质,确定PM的位置是重点,再分段求出OM及OP的长,即可进行计算.16、y=﹣【解析】根据同底等高的两个三角形面积相等,可得△AOC的面积=△ABC的面积=3,再根据反比例函数中k的几何意义,即可确定k的值,进而得出反比例函数的解析式.【详解】解:如图,连接AO,设反比例函数的解析式为y=.∵AC⊥y轴于点C,∴AC∥BO,∴△AOC的面积=△ABC的面积=3,又∵△AOC的面积=|k|,∴|k|=3,∴k=±2;又∵反比例函数的图象的一支位于第二象限,∴k<1.∴k=﹣2.∴这个反比例函数的解析式为y=﹣.故答案为y=﹣.【点睛】本题考查待定系数法求反比例函数的解析式和反比例函数中k的几何意义.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.17、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解.【详解】解:y=0时,0=x2﹣4x+1,解得x1=1,x2=1∴线段AB的长为2,∵与y轴交点C(0,1),∴以AB为底的△ABC的高为1,∴S△ABC=×2×1=1,故答案为:1.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法.18、【分析】先分别计算特殊角的三角函数值,负整数指数幂,再合并即可得到答案.【详解】解:故答案为:【点睛】本题考查的是特殊角三角函数的计算,负整数指数幂的运算,掌握以上知识点是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)DE=4【分析】(1)连接OD,DE是切线,则OD⊥DE,则OD是△ABC的中位线,可得OD∥BC,据此即可求证;(2)过B作OD的垂线,垂足为F,证明四边形DFBE为矩形,Rt△OFB中用勾股定理即可求得DE的长度.【详解】证明(1)连接OD∵DE切⊙O于点D∴OD⊥DE∴∠ODE=90°∵D是AC的中点,O是AB的中点∴OD是△ABCD的中位线∴OD∥BC∴∠DEC=90°∴DE⊥BC(2)过B作BF⊥OD∵BF⊥OD∴∠DFB=90°∴∠DFB=∠DEB=∠ODE=90°∴四边形DFBE为矩形∴DF=BE=2∴OF=OD-DF=5-2=3∴DE=BF=4【点睛】本题考查了圆的切线的性质、三角形中位线的判定和性质、矩形的判定和性质、直角三角形的性质,辅助线是关键.20、(1)一共有16种结果;(2).【分析】(1)根据题意画出树状图,得出所有等情况的结果数,再列举出来即可;(2)先找出符合条件的结果数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:(a,b)的结果如下:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),一共有16种结果;(2)易知方程是一元二次方程,其有解的条件是b2﹣4a≥0,符合条件的(a,b):(1,4),(2,4),(3,4),(4,4),(1,3),(2,3),(1,2)共有7种结果,所以,此方程有解的概率是.【点睛】本题主要考察列表法和概率,熟练掌握计算法则是解题关键.21、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴点D1的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D2的坐标为(﹣5,3),当AB为斜边时,如图,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键.注意分类思想的运用.22、水面宽度增加了(2﹣4)米【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加了(2﹣4)米.【点睛】此题考查的是二次函数的应用,建立适当的坐标系,利用待定系数法求二次函数的解析式是解决此题的关键.23、(1)60;(2)54°;(3)1500户;(4)见解析,.【分析】(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户)故答案为60(2)9÷60×360°=54°,C级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为54°(3)(户)(4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中的结果有8种∴P(选中)=.【点睛】本题考查了条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房产分割与继承协议细则
- 2024协议管理实例:签署制度与流程
- 2024房地产交易居间服务协议
- 2024高级管理人员年薪制协议样本
- 2024年工程经纪协议格式
- 2024年二手装载机销售协议示例
- 2024年度信托贷款协议范本汇编
- 仁爱故事课件教学课件
- 临时活动用品转让合同
- 交通运输租赁合同
- 期中模拟检测(1-4单元)(试题)(含答案)-2024-2025学年四年级上册数学北师大版
- 企业名称预先核准通知书
- 大学生职业生涯规划学习通超星期末考试答案章节答案2024年
- GB 5920-2024汽车和挂车光信号装置及系统
- 2023-2024学年湖南省长沙市八年级(上)期中物理试卷
- 2024年人教版语文三年级上册《第八单元》大单元整体教学设计
- 万达入职性格在线测评题
- 国开2024年秋《机械制图》形考作业1-4答案
- 2024中国中煤招聘笔试参考题库含答案解析
- 2024年四川省自然资源投资集团有限责任公司招聘笔试参考题库附带答案详解
- 23S519 小型排水构筑物(带书签)
评论
0/150
提交评论