2025届山东省济南市章丘区九上数学期末质量跟踪监视试题含解析_第1页
2025届山东省济南市章丘区九上数学期末质量跟踪监视试题含解析_第2页
2025届山东省济南市章丘区九上数学期末质量跟踪监视试题含解析_第3页
2025届山东省济南市章丘区九上数学期末质量跟踪监视试题含解析_第4页
2025届山东省济南市章丘区九上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省济南市章丘区九上数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若(、均不为0),则下列等式成立的是()A. B. C. D.2.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+33.下列成语描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.水涨船高4.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是()书面家庭作业时间(分钟)708090100110学生人数(人)472072A.众数是90分钟 B.估计全校每天做书面家庭作业的平均时间是89分钟C.中位数是90分钟 D.估计全校每天做书面家庭作业的时间超过90分钟的有9人5.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6) B.(9,6) C. D.(10,6)6.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-27.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.=﹣5,=3 D.=5,=38.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.9.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=10.如图,已知,直线与直线相交于点,下列结论错误的是()A. B.C. D.二、填空题(每小题3分,共24分)11.下列四个函数:①②③④中,当x<0时,y随x的增大而增大的函数是______(选填序号).12.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.13.如图,在中,点分别是边上的点,,则的长为________.14.如图示,在中,,,,点在内部,且,连接,则的最小值等于______.15.如图,一块含30°的直角三角板ABC(∠BAC=30°)的斜边AB与量角器的直径重合,与点D对应的刻度读数是54°,则∠BCD的度数为_____度.16.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.17.若关于的方程的解为非负数,且关于的不等式组有且仅有5个整数解,则符合条件的所有整数的和是__________.18.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.三、解答题(共66分)19.(10分)已知关于x的一元二次方程x2+(2m+1)x+m2+m=1.求证:无论m为何值,方程总有两个不相等的实数根.20.(6分)已知抛物线与轴交于两点,与轴交于点.(1)求此抛物线的表达式及顶点的坐标;(2)若点是轴上方抛物线上的一个动点(与点不重合),过点作轴于点,交直线于点,连结.设点的横坐标为.①试用含的代数式表示的长;②直线能否把分成面积之比为1:2的两部分?若能,请求出点的坐标;若不能,请说明理由.(3)如图2,若点也在此抛物线上,问在轴上是否存在点,使?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.22.(8分)每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为30元的护眼台灯以80元售出,平均每月能售出200盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式;(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?23.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;24.(8分)如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)25.(10分)已知关于x的一元二次方程.(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为整数,求k的值.26.(10分)如图,已知一次函数的图象交反比例函数的图象于点和点,交轴于点.(1)求这两个函数的表达式;(2)求的面积;(3)请直接写出不等式的解集.

参考答案一、选择题(每小题3分,共30分)1、D【分析】直接利用比例的性质分别判断得出答案.【详解】解:A、,则xy=21,故此选项错误;

B、,则xy=21,故此选项错误;

C、,则3y=7x,故此选项错误;

D、,则3x=7y,故此选项正确.

故选:D.【点睛】此题主要考查了比例的性质,正确将比例式变形是解题关键.2、D【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.3、A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即=90,正确;C、平均时间为:×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.5、B【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.6、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【点睛】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.7、D【分析】利用因式分解法求解可得.【详解】解:∵2x(x﹣5)=6(x﹣5)2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,则x﹣5=0或2x﹣6=0,解得x=5或x=3,故选:D.【点睛】本题考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C.【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.9、D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.10、B【分析】根据平行线分线段成比例的性质逐一分析即可得出结果.【详解】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD,则,所以B选项的结论错误;C、由CD∥EF,则,所以C选项的结论正确;D、由AB∥EF,则,所以D选项的结论正确.故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.二、填空题(每小题3分,共24分)11、②③【分析】分别根据一次函数、反比例函数和二次函数的单调性分别进行判断即可.【详解】解:

①在y=-2x+1中,k=-2<0,则y随x的增大而减少;

②在y=3x+2中,k=3>,则y随x的增大而增大;

③在中,k=-3<0,当x<00时,在第二象限,y随x的增大而增大;

④在y=x2+2中,开口向上,对称轴为x=0,所以当x<0时,y随x的增大而减小;

综上可知满足条件的为:②③.

故答案为:②③.【点睛】本题主要考查函数的增减性,掌握一次函数、反比例函数的增减性与k的关系,以及二次函数的增减性是解题的关键.12、.【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.13、1【分析】根据平行线分线段成比例定理即可解决问题.【详解】∵,,∴,,则,,∴,∵,∴.故答案为:1.【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.14、【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小,构建圆,利用勾股定理,即可得解.【详解】∵,,,∴∴∠CAB=30°,∠ABC=60°∵,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小∴CO⊥AB,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴∴故答案为.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P的位置.15、1.【分析】先利用圆周角定理的推论判断点C、D在同一个圆上,再根据圆周角定理得到∠ACD=27°,然后利用互余计算∠BCD的度数.【详解】解:∵∠C=90°,∴点C在量角器所在的圆上∵点D对应的刻度读数是54°,即∠AOD=54°,∴∠ACD=∠AOD=27°,∴∠BCD=90°﹣27°=1°.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.16、【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,

∴此扇形的弧长为=π.

故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.17、1【分析】解方程得x=,即a≠1,可得a≤5,a≠1;解不等式组得0<a≤1,综合可得0<a<1,故满足条件的整数a的值为1,2.【详解】解不等式组,可得,∵不等式组有且仅有5个整数解,∴,∴0<a≤1,解分式方程,可得x=,即a≠1又∵分式方程有非负数解,∴x≥0,即≥0,解得a≤5,a≠1∴0<a<1,∴满足条件的整数a的值为1,2,∴满足条件的整数a的值之和是1+2=1,故答案为:1.【点睛】考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题,熟练掌握和灵活运用相关知识是解题的关键.18、1:1.【解析】试题分析:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:1.考点:相似三角形的性质.三、解答题(共66分)19、见解析【分析】根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根.【详解】解:证明:在方程x2+(2m+1)x+m2+m=1中,△=b2-4ac=(2m+1)2-4×1×(m2+m)=1>1,

∴无论实数m取什么值,方程总有两个不相等的实数根.【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>1时,方程有两个不相等的实数根”.20、(1),顶点坐标为:;(2)①;②能,理由见解析,点的坐标为;(3)存在,点Q的坐标为:或.【分析】(1)根据待定系数法即可求出抛物线的解析式,然后把一般式转化为顶点式即可得出抛物线的顶点坐标;(2)①先利用待定系数法求出直线的函数表达式,再设出点D、E的坐标,然后分点D在y轴右侧和y轴左侧利用或列式化简即可;②根据题意容易判断:点D在y轴左侧时,不存在这样的点;当点D在y轴右侧时,分或两种情况,设出E、F坐标后,列出方程求解即可;(3)先求得点M、N的坐标,然后连接CM,过点N作NG⊥CM交CM的延长线于点G,即可判断∠MCN=45°,则点C即为符合题意的一个点Q,所以另一种情况的点Q应为过点C、M、N的⊙H与y轴的交点,然后根据圆周角定理的推论、等腰直角三角形的性质和勾股定理即可求出CQ的长,进而可得结果.【详解】解:(1)∵抛物线与轴交于点,∴设抛物线的表达式为:,把点代入并求得:,∴抛物线的表达式为:,即,∴抛物线的顶点坐标为:;(2)①设直线的表达式为:,则,解得:,∴直线的表达式为:,设,则,当时,∴,当时,,综上:,②由题意知:当时,不存在这样的点;当时,或,∵,∴,∴,解得(舍去),∴,或,解得(舍去),(舍去),综上,直线能把分成面积之比为1:2的两部分,且点的坐标为;(3)∵点在抛物线上,∴,∴,连接MC,如图,∵C(0,6),M(1,6)∴MC⊥y轴,过点N作NG⊥CM交CM的延长线于点G,∵N(2,4),∴CG=NG=2,∴△CNG是等腰直角三角形,∴∠MCN=45°,则点C即为符合题意的一个点Q,∴另一种情况的点Q应为过点C、M、N的⊙H与y轴的交点,连接HN,∵,∴MN=,CM=1,∵,∴∠MHN=90°,则半径MH=NH=,∵∠MCQ=90°,∴MQ是直径,且,∴,∵OC=6,∴OQ=3,∴Q(0,3);综上,在轴上存在点,使,且点Q的坐标为:或.【点睛】本题是二次函数综合题,综合考查了待定系数法求一次函数和二次函数的解析式、函数图象上点的坐标特征、三角形的面积问题、一元二次方程的求解、圆周角定理及其推论、勾股定理和等腰直角三角形的判定和性质等知识,综合性强,难度较大,属于试卷的压轴题,熟练掌握待定系数法是解(1)题的关键,熟知函数图象上点的坐标特征、正确进行分类是解(2)题的关键,将所求点Q的坐标转化为圆的问题、灵活应用数形结合的思想是解(3)题的关键.21、(1)y=x+1;y=(2)证明见解析;(3)存在,D(8,1).【分析】(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.【详解】解:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1;(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.22、(1)y=﹣10x2+1300x﹣30000;(2)销售价定为65元时,所得月利润最大,最大月利润为12250元.【分析】(1)根据“总利润=单件利润×销售量”可得;(2)利用配方法求出二次函数最值即可得出答案.【详解】解:(1)设售价为x元/盏,月销售利润y元,根据题意得:y=(x﹣30)[200+10(80﹣x)]=﹣10x2+1300x﹣30000;(2)∵y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∴当销售价定为65元时,所得月利润最大,最大月利润为12250元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.23、(1)1;(2)【分析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得:解得:=1经检验:=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.24、大树的高约为6.0米.【分析】作CM⊥DB于点M,已知BC的坡度即可得到BM和CM的比值,在Rt△MBC中,利用勾股定理即可求得BM和MC的长度,再在Rt△DCM中利用三角函数求得DM的长,由BD=BM+DM即可求得大树

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论