2025届甘肃省兰州市第四片区九上数学期末学业水平测试试题含解析_第1页
2025届甘肃省兰州市第四片区九上数学期末学业水平测试试题含解析_第2页
2025届甘肃省兰州市第四片区九上数学期末学业水平测试试题含解析_第3页
2025届甘肃省兰州市第四片区九上数学期末学业水平测试试题含解析_第4页
2025届甘肃省兰州市第四片区九上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省兰州市第四片区九上数学期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.四位同学在研究函数(是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲 B.乙 C.丙 D.丁2.设,,是抛物线上的三点,则的大小关系为()A. B. C. D.3.如图,PA,PB切⊙O于点A,B,点C是⊙O上一点,且∠P=36°,则∠ACB=()A.54° B.72° C.108° D.144°4.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=4,AB=6,BC=12,则DE等于()A.4 B.6 C.8 D.105.下列四对图形中,是相似图形的是()A.任意两个三角形 B.任意两个等腰三角形C.任意两个直角三角形 D.任意两个等边三角形6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.16 B.13 C.17.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A. B. C. D.8.如图,⊙O是直角△ABC的内切圆,点D,E,F为切点,点P是上任意一点(不与点E,D重合),则∠EPD=()A.30° B.45° C.60° D.75°9.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.3210.如图,在Rt△ABC中,CD是斜边AB上的中线,已知AC=3,CD=2,则cosA的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.矩形的对角线长13,一边长为5,则它的面积为_____.12.如图,在置于平面直角坐标系中,点的坐标为,点的坐标为,点是内切圆的圆心.将沿轴的正方向作无滑动滚动,使它的三边依次与轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2020次滚动后,内切圆的圆心的坐标是__________.13.平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是_______.14.已知关于x的一元二次方程(k-1)x2+x+k2-1=0有一个根为0,则k的值为________.15.如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,则B,C两地的距离为_____.16.Rt△ABC中,∠C=90°,AB=10,,则BC的长为____________.17.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.18.如图,菱形的边长为4,,E为的中点,在对角线上存在一点,使的周长最小,则的周长的最小值为__________.三、解答题(共66分)19.(10分)解方程:x2+x﹣1=1.20.(6分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:①打折销售;②不打折,一次性送装修费每平方米元.试问哪种方案更优惠?21.(6分)如图,,,求的值.22.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.23.(8分)如图1,抛物线与轴交于,两点,与轴交于点,已知点,且对称轴为直线.(1)求该抛物线的解析式;(2)点是第四象限内抛物线上的一点,当的面积最大时,求点的坐标;(3)如图2,点是抛物线上的一个动点,过点作轴,垂足为.当时,直接写出点的坐标.24.(8分)如图,直线与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式.(2)点P是第一象限抛物线上的一点,连接PA,PB,PO,若△POA的面积是△POB面积的倍.①求点P的坐标;②点Q为抛物线对称轴上一点,请求出QP+QA的最小值.25.(10分)已知:如图,AB为⊙O的直径,OD∥AC.求证:点D平分.26.(10分)列一元二次方程解应用题某公司今年1月份的纯利润是20万元,由于改进技术,生产成本逐月下降,3月份的纯利润是22.05万元.假设该公司2、3、4月每个月增长的利润率相同.(1)求每个月增长的利润率;(2)请你预测4月份该公司的纯利润是多少?

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A.假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得解得:∴二次函数的解析式为:∴当x=时,y的最小值为,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B.假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C.假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得解得:∴当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意;D.假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意.故选B.【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b、c的值是解决此题的关键.2、D【分析】根据二次函数的性质得到抛物线的开口向上,对称轴为直线x=-2,然后根据三个点离对称轴的远近判断函数值的大小.【详解】,∵a=1>0,∴抛物线开口向上,对称轴为直线x=-2,∵离直线x=-2的距离最远,离直线x=-2的距离最近,∴.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.3、B【解析】连接AO,BO,∠P=36°,所以∠AOB=144°,所以∠ACB=72°.故选B.4、C【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质可得出,再代入AD=4,AB=6,BC=12即可求出DE的长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴DE=1.故选:C.【点睛】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长.5、D【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,对题中条件一一分析,排除错误答案.【详解】解:A、任意两个三角形,形状不确定,不一定是相似图形,故A错误;B、任意两个等腰三角形,形状不确定,不一定是相似图形,故B错误;C、任意两个直角三角形,直角边的长度不确定,不一定是相似图形,故C错误;D、任意两个等边三角形,形状相同,但大小不一定相同,符合相似形的定义,故D正确;故选:D.【点睛】本题考查的是相似形的识别,关键要联系实际,根据相似图形的定义得出.6、B【解析】试题分析:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率=26=1考点:列表法与树状图法.7、D【分析】首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选D.【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△BOE和△ABE面积相等是解题关键.8、B【分析】连接OE,OD,由切线的性质易证四边形OECD是矩形,则可得到∠EOD的度数,由圆周角定理进而可求出∠EPD的度数.【详解】解:连接OE,OD,∵⊙O是直角△ABC的内切圆,点D,E,F为切点,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四边形OECD是矩形,∴∠EOD=90°,∴∠EPD=∠EOD=45°,故选:B.【点睛】此题主要考查了圆周角定理以及切线的性质等知识,得出∠EOD=90°是解题关键.9、D【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.10、A【分析】利用直角三角形的斜边中线与斜边的关系,先求出AB,再利用直角三角形的边角关系计算cosA.【详解】解:∵CD是Rt△ABC斜边AB上的中线,

∴AB=2CD=4,∴cosA==.故选A.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、锐角三角函数.掌握直角三角形斜边的中线与斜边的关系是解决本题的关键.在直角三角形中,斜边的中线等于斜边的一半.二、填空题(每小题3分,共24分)11、1【分析】先运用勾股定理求出另一条边,再运用矩形面积公式求出它的面积.【详解】∵对角线长为13,一边长为5,∴另一条边长==12,∴S矩形=12×5=1;故答案为:1.【点睛】本题考查了矩形的性质以及勾股定理,本题关键是运用勾股定理求出另一条边.12、(8081,1)【分析】由勾股定理得出AB=,得出Rt△OAB内切圆的半径==1,因此P的坐标为(1,1),由题意得出P3的坐标(3+5+4+1,1),得出规律:每滚动3次一个循环,由2020÷3=673…1,即可得出结果.【详解】解:∵点A的坐标为(0,4),点B的坐标为(3,0),∴OA=4,OB=3,∴AB=∴Rt△OAB内切圆的半径==1,∴P的坐标为(1,1),P2的坐标为(3+5+4-1,1),即(11,1)∵将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,设P1的横坐标为x,根据切线长定理可得5-(x-3)+3-(x-3)=4解得:x=5∴P1的坐标为(3+2,1)即(5,1)∴P3(3+5+4+1,1),即(13,1),每滚动3次一个循环,∵2020÷3=673…1,∴第2020次滚动后,Rt△OAB内切圆的圆心P2020的横坐标是673×(3+5+4)+5,即P2020的横坐标是8081,∴P2020的坐标是(8081,1);故答案为:(8081,1).【点睛】本题考查了三角形的内切圆与内心、切线长定理、勾股定理、坐标与图形性质等知识;根据题意得出规律是解题的关键.13、1,3,3【详解】解:考虑到∠AOB=1100,∠ACB=2,AO=BO=1,分两种情况探究:情况1,如图1,作△AOB,使∠AOB=1100,AO=BO=1,以点O为圆心,1为半径画圆,当点C在优弧AB上时,根据同弧所圆周角是圆心角一半,总有∠ACB=∠AOB=2,此时,OC=AO=BO=1.情况1,如图1,作菱形AOMB,使∠AOB=1100,AO=BO=AM=BM=1,以点M为圆心,1为半径画圆,当点C在优弧AB上时,根据圆内接四边形对角互补,总有∠ACB=1800-∠AOB=2.此时,OC的最大值是OC为⊙M的直径3时,所以,1<OC≤3,整数有3,3.综上所述,满足题意的OC长度为整数的值可以是1,3,3.故答案为:1,3,3.14、-1【解析】把x=0代入方程得k2-1=0,解得k=1或k=-1,而k-1≠0,所以k=-1,故答案为:-1.15、4千米.【分析】根据题意在图中作出直角三角形,由题中给出的方向角和距离,先求出的长,再根据等腰三角形的性质即可求得.【详解】过B作BD⊥AC于点D.在Rt△ABD中,BD=ABsin∠BAD=8×=4(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=4(千米),∴BC=,BD=4(千米).故答案为:4千米.【点睛】本题考查特殊角的三角函数值和利用三角函数解三角形,属基础题.16、1【分析】由cosB==可设BC=3x,则AB=5x,根据AB=10,求得x的值,进而得出BC的值即可.【详解】解:如图,

∵Rt△ABC中,cosB==,

∴设BC=3x,则AB=5x=10,∴x=2,BC=1,故答案为:1.【点睛】本题考查了解直角三角形,熟练掌握三角函数的定义及勾股定理是解题的关键.17、y=-5(x+2)2-1【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,

∴新抛物线顶点坐标为(-2,-1),

∴所得到的新的抛物线的解析式为y=-5(x+2)2-1.

故答案为:y=-5(x+2)2-1.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.18、+2【分析】连接DE,因为BE的长度固定,所以要使△PBE的周长最小,只需要PB+PE的长度最小即可.【详解】解:连结DE.∵BE的长度固定,∴要使△PBE的周长最小只需要PB+PE的长度最小即可,∵四边形ABCD是菱形,∴AC与BD互相垂直平分,∴P′D=P′B,∴PB+PE的最小长度为DE的长,∵菱形ABCD的边长为4,E为BC的中点,∠DAB=60°,∴△BCD是等边三角形,又∵菱形ABCD的边长为4,∴BD=4,BE=2,DE=,∴△PBE的最小周长=DE+BE=,故答案为:.【点睛】本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.三、解答题(共66分)19、x1=,x2=.【分析】直接用公式法求解即可,首先确定a,b,c,再判断方程的解是否存在,若存在代入公式即可求解.【详解】解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>1,x=;∴x1=,x2=.【点睛】此题主要考查一元二次方程的解法,主要有:因式分解法、公式法、配方法、直接开平方法等,要针对不同的题型选用合适的方法.20、(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价两年物业管理费②方案:下调后的均价,比较确定出更优惠的方案.【详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去).答:平均每次降价的百分率为.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.21、【分析】证明△AFG∽△BFD,可得,由AG∥BD,可得△AEG∽△CED,则结论得出.【详解】解:∵,∴,∴.∵,∴,∴.∵,∴,∴.【点睛】此题考查相似三角形的判定和性质,平行线的性质,解题的关键是熟练掌握基本知识.22、(1)证明见解析;(2)弧DE的长为π;(3)当∠F的度数是36°时,BF与⊙O相切.理由见解析.【解析】(1)连接AE,求出AE⊥BC,根据等腰三角形性质求出即可;(2)根据圆周角定理求出∠DOE的度数,再根据弧长公式进行计算即可;(3)当∠F的度数是36°时,可以得到∠ABF=90°,由此即可得BF与⊙O相切.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.【点睛】本题考查了圆周角定理、切线的判定、弧长公式等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.23、(1);(2)(3)或或或【分析】(1)由对称性可知抛物线与轴的另一个交点为,将点,坐标代入,联立方程组求解即可得到,即可得到抛物线的解析式.(2)作轴交直线于点,设直线BC:y=kx+b,代入B、C两点坐标求得直线为,设点为,则点为,,表示出S,化简整理可得,根据二次函数的性质得当时,的面积最大,此时点坐标为(3)根据A、B坐标易得AB=4,当PQ=3时满足条件,P点的纵坐标为±3,代入函数解析式求得P点的横坐标,即可得到P点的坐标.【详解】解:(1)由对称性可知抛物线与轴的另一个交点为把点,坐标代入,,解得抛物线的解析式为.(2)如图1,作轴交直线于点设直线BC:y=kx+b,代入B(3,0),C(0,-3)可得解得:∴直线为设点为则点为当时,的面积最大,代入,可得=,此时点坐标为(3)∵A(-1,0),B(3,0)∴AB=4∵∴PQ=3,即P点纵坐标为±3,当y=3时,解得:当y=-3时,解得:x1=0,x2=2,综上,当时,或或或.【点睛】本题为二次函数的综合,涉及知识点有待定系数法、二次函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论