版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省遵义市2025届数学九上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A.轴对称图形 B.中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形又不是中心对称图形2.下列方程中,为一元二次方程的是()A.x=2 B.x+y=3 C. D.3.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为()A.4 B.2 C.2 D.4.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n) B.3(m+n) C.4n D.4m5.下列函数关系式中,是的反比例函数的是()A. B. C. D.6.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=7.下列几何体的三视图相同的是(
)A.圆柱
B.球
C.圆锥
D.长方体8.二次函数的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下 B.抛物线与轴有两个交点C.抛物线的对称轴是直线=1 D.抛物线经过点(2,3)9.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C. D.10.在同一时刻,身高1.6m的小强在阳光下的影长为0.8m,一棵大树的影长为4.8m,则树的高度为()A.4.8m B.6.4m C.9.6m D.10m二、填空题(每小题3分,共24分)11.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)12.反比例函数和在第一象限的图象如图所示,点A在函数图像上,点B在函数图像上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为_____.13.二次函数y=3x2+3的最小值是__________.14.如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件(只需写一个).15.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有.(填序号)16.如图,在菱形ABCD中,E是BC边上的点,AE交BD于点F,若EC=2BE,则的值是.17.如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边,,测得边DF离地面的高度,,则树AB的高度为_______cm.18.工厂质检人员为了检测其产品的质量,从同一批次共1000件产品中随机抽取50件进行检检测出次品1件,由此估计这一批产品中的次品件数是_____.三、解答题(共66分)19.(10分)如图,在等腰中,,,是上一点,若.(1)求的长;(2)求的值.20.(6分)如图,在菱形中,点在对角线上,延长交于点.(1)求证:;(2)已知点在边上,请以为边,用尺规作一个与相似,并使得点在上.(只须作出一个,保留作图痕迹,不写作法)21.(6分)如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)22.(8分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.23.(8分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;(2)△A′B′C′的面积为个平方单位;(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、Dn′标出)24.(8分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?25.(10分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.26.(10分)已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,(1)求证:△ABC≌△EDF;(2)当∠CHD=120°,求∠HBD的度数.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称和中心对称图形的概念判断即可.【详解】“赵爽弦图”是中心对称图形,但不是轴对称图形,故选:B.【点睛】本题主要考查轴对称和中心对称,会判断轴对称图形和中心对称图形是解题的关键.2、C【解析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、x=2是一元一次方程,故A错误;B、x+y=3是二元一次方程,故B错误;C、是一元二次方程,故C正确;D、是分式方程,故D错误;故选:C.【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是关键.3、C【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=1BD,再证得四边形OADB是矩形,利用AC⊥x轴得到C(1,1),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】解:作BD⊥AC于D,如图,∵ABC为等腰直角三角形,∴BD是AC的中线,∴AC=1BD,∵CA⊥x轴于点A,∵AC⊥x轴,BD⊥AC,∠AOB=90°,∴四边形OADB是矩形,∴BD=OA=1,∴AC=1,∴C(1,1),把C(1,1)代入y=得k=1×1=1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.4、D【详解】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.5、C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如的式子,其中k≠0.6、C【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【详解】BADCAE,A,B,D都可判定,选项C中不是夹这两个角的边,所以不相似.故选C.【点睛】考查相似三角形的判断方法,掌握相似三角形常用的判定方法是解题的关键.7、B【解析】试题分析:选项A、圆柱的三视图,如图所示,不合题意;选项B、球的三视图,如图所示,符合题意;选项C、圆锥的三视图,如图所示,不合题意;选项D、长方体的三视图,如图所示,不合题意;.故答案选B.考点:简单几何体的三视图.8、B【详解】A、a=2,则抛物线y=2x2-3的开口向上,所以A选项错误;B、当y=0时,2x2-3=0,此方程有两个不相等的实数解,即抛物线与x轴有两个交点,所以B选项正确;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当x=2时,y=2×4-3=5,则抛物线不经过点(2,3),所以D选项错误,故选B.9、B【分析】等量关系为:2016年贫困人口年贫困人口,把相关数值代入计算即可.【详解】解:设这两年全省贫困人口的年平均下降率为,根据题意得:,故选B.【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.10、C【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】设树高为x米,所以x=4.8×2=9.6.这棵树的高度为9.6米故选C.【点睛】考查相似三角形的应用,掌握同一时刻物高和影长成正比是解题的关键.二、填空题(每小题3分,共24分)11、有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【详解】解:(x+1)(x-3)=2x-5整理得:,即,配方得:,解得:,,∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【点睛】此题考查解一元二次方程,或者求判别式与根的个数的关系.12、1【分析】设A(m,),B(m,),则AB=-,△ABC的高为m,根据三角形面积公式计算即可得答案.【详解】∵A、B分别为、图象上的点,AB∥y轴,∴设A(m,),B(m,),∴S△ABC=(-)m=1.故答案为:1【点睛】本题考查反比例函数图象上点的坐标特征,熟知反比例函数图象上点的坐标都满足反比例函数的解析式是解题关键.13、1.【分析】根据二次函数的性质求出函数的最小值即可.【详解】解:∵y=1x2+1=1(x+0)2+1,
∴顶点坐标为(0,1).
∴该函数的最小值是1.故答案为:1.【点睛】本题考查了二次函数的性质,二次函数的最值,正确的理解题意是解题的关键.14、【解析】试题分析:有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似.所以在本题的条件的需要满足考点:相似三角形的判定点评:解答本题的的关键是熟练掌握有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似.15、①③④【解析】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.考点:翻折变换的性质、菱形的判定与性质、勾股定理16、【解析】EC=2BE,得,由于AD//BC,得17、420【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC的长,再加上AC即可得解.【详解】解:在△DEF和△DBC中,∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,∴,解得BC=300cm,∵,∴AB=AC+BC=120+300=420m,即树高420m.故答案为:420.【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF和△DBC相似是解题的关键.18、1【分析】求出次品所占的百分比,即可求出1000件中次品的件数.【详解】解:1000×=1(件),故答案为:1.【点睛】考查样本估计总体,求出样本中次品所占的百分比是解题的关键.三、解答题(共66分)19、(1)AD=2;(2)【分析】(1)先作,由等腰三角形,,得到,根据勾股定理可得;(2)由长度,再根据锐角三角函数即可得到答案.【详解】(1)作等腰三角形,(2)【点睛】本题考查等腰三角形和锐角三角函数,解题的关键是掌握等腰三角形和锐角三角函数.20、(1)详见解析;(2)详见解析;【分析】(1)根据菱形的性质可得:,再根据相似三角形的判定即可证出,从而得出结论;(2)根据菱形的性质,可得DA=DC,从而得出∠DAC=∠DCA,可得只需做∠CPQ=∠AEF或∠CPQ=∠AFE,即可得出与相似,然后用尺规作图作∠CPQ=∠AEF或∠CPQ=∠AFE即可.【详解】解:(1)∵四边形是菱形,∴.∴.∴.(2)∵四边形是菱形∴DA=DC∴∠DAC=∠DCA∴只需做∠CPQ=∠AEF或∠CPQ=∠AFE,即可得出与相似,尺规作图如图所示:①作∠CPQ=∠AEF,步骤为:以点E为圆心,以任意长度为半径,作弧,交EA和EF于点G、H,以P为圆心,以相同长度为半径作弧,交CP于点M,以M为圆心,以GH的长为半径作弧,两弧交于点N,连接PN并延长,交AC于Q,就是所求作的三角形;②作∠CPQ=∠AFE,作法同上;或∴就是所求作的三角形(两种情况任选其一即可).【点睛】此题考查的是菱形的性质、相似三角形的判定及性质和尺规作图,掌握菱形的性质、相似三角形的判定定理及性质定理和用尺规作图作角等于已知角是解决此题的关键.21、24米【分析】由i==,DE2+EC2=CD2,解得DE=5m,EC=m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,则四边形DEBG、四边形DECH、四边形BCHG都是矩形,证得AB=BC,设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,在Rt△ADG中,=tan∠ADG,代入即可得出结果.【详解】解:在Rt△DEC中,∵i==,,DE2+EC2=CD2,CD=10,∴DE2+(DE)2=102,解得:DE=5(m),
∴EC=m,
过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:
则四边形DEBG、四边形DECH、四边形BCHG都是矩形,
∵∠ACB=45°,AB⊥BC,
∴AB=BC,
设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,
在Rt△ADG中,∵=tan∠ADG,,解得:x=15+5≈24,答:楼AB的高度为24米.【点睛】本题考查了解直角三角形的应用-方向角问题,通过解直角三角形得出方程是解题的关键.22、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.23、(1)详见解析;(2)10;(3)详见解析【分析】(1)依据点O为位似中心,且位似比为2:1,即可得到△A′B′C′;(2)依据割补法进行计算,即可得出△A′B′C′的面积;(3)依据△A′B′D′的面积等于△A′B′C′的面积,即可得到所有符合条件的点D′.【详解】解:(1)如图所示,△A′B′C′即为所求;(2)△A′B′C′的面积为4×6﹣×2×4﹣×2×4﹣×2×6=24﹣4﹣4﹣6=10;故答案为:10;(3)如图所示,所有符合条件的点D′有5个.【点睛】此题主要考查位似图形的作图,解题的关键是熟知位似图形的性质及网格的特点.24、(1)y=﹣0.5x+110;(2)房价定为120元时,合作社每天获利最大,最大利润是5000元.【解析】(1)根据题意和函数图象中的数据可以求得相应的函数解析式;(2)根据题意可以得到利润与x之间的函数解析式,从而可以求得最大利润.【详解】(1)设y与x之间的函数关系式为y=kx+b,,解得:,即y与x之间的函数关系式是y=﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省行政职业能力真题2016年上半年
- 2019年江西公务员考试申论真题(乡镇机关职位)
- 2024年联合体合同书
- 2024年工程借款合同书
- 北京申论模拟116
- 浙江申论模拟129
- 河南省南阳市六校2024-2025学年高二上学期10月期中考试 数学 含答案
- 建筑工程劳务承包合同
- 2024年全日制劳动合同书样本
- 新解读《GBT 41127-2021跨境电子商务 在线争议解决单证规范》
- 健康管理师招聘协议书
- 羊水少治疗护理查房
- 2024年陕西省二级建造师继续教育网络考试试题
- 2024年中考语文第一轮考点复习(全国通用) 专题11:记叙文阅读之情节与线索【习题精练】 (原卷版+解析)
- 2024年黑龙江省机场管理集团有限公司招聘笔试参考题库含答案解析
- 机械设备零部件招标标书文件
- 幼儿园主题活动中家长资源的利用现状研究-毕业论文
- 中煤陕西公司招聘笔试题
- 第1单元水复习(课件)科教版科学三年级上册
- 天堂旅行团读书分享
- 【课件】第3课+象外之境-中国传统山水画+课件-高中美术人教版(2019)美术鉴赏
评论
0/150
提交评论