版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.抛物线的开口方向是()A.向下 B.向上 C.向左 D.向右2.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似()A.①处 B.②处 C.③处 D.④处3.若∽,相似比为,则与的周长比为()A. B. C. D.4.如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.5.用配方法解方程时,可将方程变形为()A. B. C. D.6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A. B. C. D.7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是()A. B. C. D.9.定义新运算:对于两个不相等的实数,,我们规定符号表示,中的较大值,如:.因此,;按照这个规定,若,则的值是()A.-1 B.-1或 C. D.1或10.已知的直径是8,直线与有两个交点,则圆心到直线的距离满足()A. B. C. D.11.下列图形中,不是中心对称图形的是()A. B. C. D.12.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率二、填空题(每题4分,共24分)13.已知:如图,在中,于点,为的中点,若,,则的长是_______.14.两个相似多边形的一组对应边分别为2cm和3cm,那么对应的这两个多边形的面积比是__________15.如图,⊙O的半径OC=10cm,直线l⊥OC,垂足为H,交⊙O于A,B两点,AB=16cm,直线l平移____________cm时能与⊙O相切.16.已知1是一元二次方程的一个根,则p=_______.17.抛物线y=ax2-4ax+4(a≠0)与y轴交于点A.过点B(0,3)作y轴的垂线l,若抛物线y=ax2-4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且│m│<1,则a的取值范围是______.18.如图,在中,,,以为直角边、为直角顶点作等腰直角三角形,则______.三、解答题(共78分)19.(8分)已知抛物线经过点,,与轴交于点.(1)求这条抛物线的解析式;(2)如图,点是第三象限内抛物线上的一个动点,求四边形面积的最大值.20.(8分)如图,已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.21.(8分)甲、乙、丙三个球迷决定通过抓阄来决定谁得到仅有的一张球票.他们准备了三张纸片,其中一张上画了个五星,另两张空白,团成外观一致的三个纸团.抓中画有五角星纸片的人才能得到球票.刚要抓阄,甲问:“谁先抓?先抓的人会不会抓中的机会比别人大?”你认为他的怀疑有没有道理?谈谈你的想法并用列表或画树状图方法说明原因.22.(10分)如图1,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,当△EPC的面积为3cm2时,求t的值;(3)在运动过程中,当t取何值时,△EPQ与△ADC相似.23.(10分)我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知的两条弦,则、互为“十字弦”,是的“十字弦”,也是的“十字弦”.(1)若的半径为5,一条弦,则弦的“十字弦”的最大值为______,最小值为______.(2)如图1,若的弦恰好是的直径,弦与相交于,连接,若,,,求证:、互为“十字弦”;(3)如图2,若的半径为5,一条弦,弦是的“十字弦”,连接,若,求弦的长.24.(10分)数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为3.3米,宽度均为3.5米.求大树的高度.25.(12分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.26.如图,是的直径,直线与相切于点.过点作的垂线,垂足为,线段与相交于点.(1)求证:是的平分线;(2)若,求的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】抛物线的开口方向由抛物线的解析式y=ax2+bx+c(a≠0)的二次项系数a的符号决定,据此进行判断即可.【详解】解:∵y=2x2的二次项系数a=2>0,
∴抛物线y=2x2的开口方向是向上;
故选:B.【点睛】本题考查了二次函数图象的开口方向.二次函数y=ax2+bx+c(a≠0)的图象的开口方向:当a<0时,开口方向向下;当a>0时,开口方向向上.2、B【分析】确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可.【详解】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为;“车”、“炮”之间的距离为1,“炮”②之间的距离为,“车”②之间的距离为2,∵∴马应该落在②的位置,故选B【点睛】本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大.3、B【分析】根据相似三角形的性质:周长之比等于相似比解答即可.【详解】解:∵∽,相似比为,∴与的周长比为.故选:B.【点睛】本题考查的是相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.4、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【点睛】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.5、D【分析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.6、D【解析】如图,∠ABC所在的直角三角形的对边AD=3,邻边BD=4,所以,tan∠ABC=.故选D.7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是=;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9、B【分析】分x>0和0x<0两种情况分析,利用公式法解一元二次方程即可.【详解】解:当x>0时,有,解得,(舍去),
x<0时,有,解得,x1=−1,x2=2(舍去).故选B.【点睛】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.10、B【分析】先求出圆的半径,再根据直线与圆的位置关系与d和r的大小关系即可得出结论.【详解】解:∵的直径是8∴的半径是4∵直线与有两个交点∴0≤d<4(注:当直线过圆心O时,d=0)故选B.【点睛】此题考查的是根据圆与直线的位置关系求圆心到直线的距离的取值范围,掌握直线与圆的位置关系与d和r的大小关系是解决此题的关键.11、B【分析】将一个图形绕某一点旋转180°后能与自身完全重合的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点睛】此题考查中心对称图形的定义,熟记定义并掌握各图形的特点是解题的关键.12、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率为,故此选项符合题意.故选:D.【点睛】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键.二、填空题(每题4分,共24分)13、【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【详解】解:∵△ABC中,AD⊥BC,∴∠ADC=90°.∵E是AC的中点,DE=5,CD=8,∴AC=2DE=1.∴AD2=AC2−CD2=12−82=2.∴AD=3.故答案为:3.【点睛】本题主要考查了直角三角形的性质,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.14、4:9【分析】根据相似三角形面积的比等于相似比的平方列式计算即可.【详解】解:因为两个三角形相似,
∴较小三角形与较大三角形的面积比为()2=,故答案为:.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.15、4或1【分析】要使直线l与⊙O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线l⊥OC,由垂径定理得AH=BH,在Rt△AOH中,求OH即可.【详解】连结OA∵直线l⊥OC,垂足为H,OC为半径,∴由垂径定理得AH=BH=AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直线l向左平移4cm时能与⊙O相切或向右平移1cm与⊙O相切.故答案为:4或1.【点睛】本题考查平移直线与与⊙O相切问题,关键是求弦心距OH,会利用垂径定理解决AH,会用勾股定理求OH,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决.16、2【分析】根据一元二次方程的根即方程的解的定义,将代入方程中,即可得到关于的方程,解方程即可得到答案.【详解】解:∵1是一元二次方程的一个根∴∴故答案是:【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.17、a>或a<.【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=,∴a>;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=,∴a<.a的取值范围是a>或a<.故答案为:a>或a<.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.18、1【分析】由于AD=AB,∠CAD=90°,则可将△ABD绕点A逆时针旋转90°得△ABE,如图,根据旋转的性质得∠CAE=90°,AC=AE,BE=CD,于是可判断△ACE为等腰直角三角形,则∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理计算出BE=1,从而得到CD=1.【详解】解:∵△ADB为等腰直角三角形,∴AD=AB,∠BAD=90°,将△ACD绕点A顺时针旋转90°得△AEB,如图,∴∠CAE=90°,AC=AE,CD=BE,∴△ACE为等腰直角三角形,∴∠ACE=45°,,∵∠ACB=45°,∴∠BCE=45°+45°=90°,在Rt△BCE中,,∴CD=1.故答案为1.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,以及勾股定理等知识.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键的利用旋转得到直角三角形CBE.三、解答题(共78分)19、(1);(2)1【分析】(1)将,代入抛物线中求解即可;(2)利用分割法将四边形面积分成,假设P点坐标,四边形面积可表示为二次函数解析式,再利用二次函数的图像和性质求得最值.【详解】解:(1)∵抛物线经过点,,∴,解得,∴抛物线的解析式为,(2)如图,连接,设点,,四边形的面积为,由题意得点,∴,∵,∴开口向下,有最大值,∴当时,四边形的面积最大,最大值为1.【点睛】本题考查了待定系数法求二次函数解析式、分割法求面积、二次函数的图象及性质的应用,比较综合,是中考中的常考题型.20、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).【分析】(1)由抛物线的对称轴为直线x=3,利用二次函数的性质即可求出a值,进而可得出抛物线的解析式,再利用二次函数图象上点的坐标特征,即可求出点A、B的坐标;(2)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B、C的坐标,利用待定系数法即可求出直线BC的解析式,假设存在,设点P的坐标为(x,),过点P作PD//y轴,交直线BC于点D,则点D的坐标为(x,),PD=-x2+2x,利用三角形的面积公式即可得出三角形PBC的面积关于x的函数关系式,再利用二次函数的性质即可解决最值问题;(3)设点M的坐标为(m,),则点N的坐标为(m,),进而可得出MN,结合MN=3即可得出关于m的含绝对值符号的一元二次方程,解之即可得出结论.【详解】(1)抛物线的对称轴是直线,,解得:,抛物线的解析式为.当时,,解得:,,点的坐标为,点的坐标为.(2)当时,,点的坐标为.设直线的解析式为.将、代入,,解得:,直线的解析式为.假设存在,设点的坐标为,过点作轴,交直线于点,则点的坐标为,如图所示.,.,当时,的面积最大,最大面积是16.,存在点,使的面积最大,最大面积是16.(3)设点的坐标为,则点的坐标为,.又,.当时,有,解得:,,点的坐标为或;当或时,有,解得:,,点的坐标为,或,.综上所述:点的坐标为,、、或,.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数的性质求出a的值;(2)根据三角形的面积公式找出关于x的函数关系式;(3)根据MN的长度,找出关于m的含绝对值符号的一元二次方程.21、甲的怀疑没有道理,先抓后抓抓中的机会是一样的,图表见解析【分析】先正确画出树状图,根据树状图求出每人抓到五星的概率即可解答.【详解】答:甲的怀疑没有道理,先抓后抓抓中的机会是一样的.用树状图列举结果如下:从图中发现无论三个人谁先抓阄,抓到五星纸片的概率都是一样的,各为.【点睛】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.22、(1)详见解析;(2)2秒;(3)2秒或秒或秒.【分析】(1)由题意通过计算发现EQ=FQ=6,由此即可证明;(2)根据题意利用三角形的面积建立方程即可得出结论;(3)由题意分点E在Q的左侧以及点E在Q的右侧这两种情况,分别进行分析即可得出结论.【详解】解:(1)证明:若运动时间t=秒,则BE=2×=(cm),DF=(cm),∵四边形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四边形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB==,在Rt△CPQ中,tan∠ACB===,∴PQ=t,∵△EPC的面积为3cm2,∴S△EPC=CE×PQ=×(8﹣2t)×t=3,∴t=2秒,即t的值为2秒;(3)解:分两种情况:Ⅰ.如图1中,点E在Q的左侧.①∠PEQ=∠CAD时,△EQP∽△ADC,∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∵△EQP∽△ADC,∴∠CAD=∠QEP,∴∠ACB=∠QEP,∴EQ=CQ,∴CE=2CQ,由(1)知,CQ=t,CE=8-2t,∴8-2t=2t,∴t=2秒;②∠PEQ=∠ACD时,△EPQ∽△CAD,∴,∵FQ⊥BC,∴FQ∥AB,∴△CPQ∽△CAB,∴,即,解得:,∴,解得:;Ⅱ.如图2中,点E在Q的右侧.∵0<t<4,∴点E不能与点C重合,∴只存在△EPQ∽△CAD,可得,即,解得:;综上所述,t的值为2秒或秒或秒时,△EPQ与△ADC相似.【点睛】本题是相似形综合题,主要考查矩形的性质和判定,三角函数,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.23、(1)10,6;(2)见解析;(3).【分析】(1)根据“十字弦”定义可得弦的“十字弦”为直径时最大,当CD过A点或B点时最小;(2)根据线段长度得出对应边成比例且有夹角相等,证明△ACH∽△DCA,由其性质得出对应角相等,结合90°的圆周角证出AH⊥CD,根据“十字弦”定义可得;(3)过O作OE⊥AB于点E,作OF⊥CD于点F,利用垂径定理得出OE=3,由正切函数得出AH=DH,设DH=x,在Rt△ODF中,利用线段和差将边长用x表示,根据勾股定理列方程求解.【详解】解:(1)当CD为直径时,CD最大,此时CD=10,∴弦的“十字弦”的最大值为10;当CD过A点时,CD长最小,即AM的长度,过O点作ON⊥AM,垂足为N,作OG⊥AB,垂足为G,则四边形AGON为矩形,∴AN=OG,∵OG⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON⊥AM,∴AM=6,即弦的“十字弦”的最小值是6.(2)证明:如图,连接AD,∵,,,∴,∵∠C=∠C,∴△ACH∽△DCA,∴∠CAH=∠D,∵CD是直径,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH⊥CD,∴、互为“十字弦”.(3)如图,过O作OE⊥AB于点E,作OF⊥CD于点F,连接OA,OD,则四边形OEHF是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan∠ADH=,∴tan60°=,设DH=,则AH=x,∴FD=3+x,OF=HE=4-x,在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,∴(3+x)2+(4-x)2=52,解得,x=,∴FD=,∵OF⊥CD,∴CD=2DF=即CD=【点睛】本题考查圆的相关性质,利用垂径定理,相似三角形等知识是解决圆问题的常用手段,对结合学过的知识和方法的基础上,用新的方法和思路来解决新题型或新定义的能力是解答此题的关键.24、米【分析】根据平行投影性质可得:;.【详解】解:延长交于点,延长交于.可求,.由,可得.∴.由,可得.所以,大树的高度为4.4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建设项目可行性报告
- 畜牧业对农村社会教育发展的支持考核试卷
- 危险品仓储的运输安全管理与监控考核试卷
- DB11T 451-2017 液化石油气、压缩天然气和液化天然气供应站安全运行技术规程
- DB11∕T 1817-2021 灌注式半柔性路面铺装层设计与施工技术规范
- 幼儿园安全卫生宣传材料
- 广东省湛江市十校联考2024届高三第一次模拟考试语文试题(解析版)
- 员工职业发展培训总结报告
- 团队冲突课件教学课件
- 淮阴工学院《空间设计基础》2022-2023学年第一学期期末试卷
- 2023-2024学年高中主题班会燃激情之烈火拓青春之华章 课件
- 中医药文化进校园-中医药健康伴我行课件
- 市政管道开槽施工-市政排水管道的施工
- 居住建筑户型分析
- 机电一体化职业生涯
- 中国电信新疆公司竞聘考试试题
- 妇科护理进修汇报
- 新团员团课培训课件
- 学校篮球教练外聘协议书
- 工作流程改进汇报
- 浙教版六年级劳动项目三-任务二《创意班规巧设计》课件
评论
0/150
提交评论