版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交,,于点,,,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是()A. B. C. D.2.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G为DF的中点.若BE=1,AG=3,则AB的长是()A. B.2 C. D.3.若点M在抛物线的对称轴上,则点M的坐标可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)4.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有一次正面朝上 B.必有5次正面朝上C.可能有7次正面朝上 D.不可能有10次正面朝上5.桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是()A. B. C. D.6.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:27.已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.8.已知点A(,m),B(l,m),C(2,1)在同一条抛物线上,则下列各点中一定在这条抛物线上的是(
)A. B. C. D.9.将抛物线向左平移3个单位长度,再向上平移5个单位长度,得到的抛物线的表达式为()A. B.C. D.10.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3,则⊙O的半径为()A.10 B.8 C.7 D.511.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>212.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>4二、填空题(每题4分,共24分)13.在一个不透明的袋中有2个红球,若干个白球,它们除颜色外其它都相同,若随机从袋中摸出一个球,摸到红球的概率是,则袋中有白球_________个.14.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程有解的概率是__________。15.计算:|﹣3|﹣sin30°=_____.16.若,且一元二次方程有实数根,则的取值范围是.17.将抛物向右平移个单位,得到新的解析式为___________.18.光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.三、解答题(共78分)19.(8分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣120.(8分)在推进城乡生活垃圾分类的行动中,某校数学兴趣小组为了了解居民掌握垃圾分类知识的情况,对两小区各600名居民进行测试,从中各随机抽取50名居民成绩进行整理得到部分信息:(信息一)小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)上图中,从左往右第四组成绩如下:75777779797980808182828383848484(信息三)两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差75.1___________7940%27775.1777645%211根据以上信息,回答下列问题:(1)求小区50名居民成绩的中位数;(2)请估计小区600名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析两小区参加测试的居民掌握垃圾分类知识的情况.21.(8分)2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.22.(10分)如图,是由两个等边三角形和一个正方形拼在-起的图形,请仅用无刻度的直尺按要求画图,(1)在图①中画一个的角,使点或点是这个角的顶点,且以为这个角的一边:(2)在图②画一条直线,使得.23.(10分)如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.24.(10分)已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条件下,方程的实数根是、,求代数式的值.25.(12分)已知二次函数中,函数与自变量的部分对应值如下表:(1)求该二次函数的关系式;(2)若,两点都在该函数的图象上,试比较与的大小.26.如图,已知点A,B的坐标分别为(4,0),(3,2).(1)画出△AOB关于原点O对称的图形△COD;(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据图形证明△AOE≌△COG,作KM⊥AD,证明四边形DKMN为正方形,再证明Rt△AEH≌Rt△CGF,Rt△DHG≌Rt△BFE,设正方形边长为a,CG=MN=x,根据正方形的性质列出平行四边形的面积的代数式,再化简整理,即可判断.【详解】连接AC,EG,交于O点,∵四边形是平行四边形,四边形是正方形,∴GO=EO,AO=CO,又∠AOE=∠COG∴△AOE≌△COG,∴GC=AE,∵NE∥AD,∴四边形AEND为矩形,∴AE=DN,∴DN=GC=MN作KM⊥AD,∴四边形DKMN为正方形,在Rt△AEH和Rt△CGF中,∴Rt△AEH≌Rt△CGF,∴AH=CF,∵AD-AH=BC-CF∴DH=BF,同理Rt△DHG≌Rt△BFE,设CG=MN=x,设正方形边长为a则S△HDG=DH×x+DG×x=S△FBES△HAE=AH×x=S△GCFS平行四边形EFGH=a2-2S△HDG-2S△HAE=a2-(DH+DG+AH)×x,∵DG=a-x∴S平行四边形EFGH=a2-(a+a-x)×x=a2-2ax+x2=(a-x)2故只需要知道a-x就可以求出面积BE=a-x,故选C.【点睛】此题主要考查正方形的性质,解题的关键是根据题意设出字母,表示出面积进行求解.2、B【分析】根据直角三角形斜边上的中线等于斜边的一半可得AG=DG,进而得到得∠ADG=∠DAG,再结合两直线平行,内错角相等可得∠ADG=∠CED,再根据三角形外角定理∠AGE=2∠ADG,从而得到∠AED=∠AGE,再得到AE=AG,然后利用勾股定理列式计算即可得解.【详解】解:∵四边形ABCD是矩形,点G是DF的中点,∴AG=DG,∴∠ADG=∠DAG,∵AD∥BC,∴∠ADG=∠CED,∴∠AGE=∠ADG+∠DAG=2∠CED,∵∠AED=2∠CED,∴∠AED=∠AGE,∴AE=AG=3,在Rt△ABE中,,故选:B.【点睛】本题考查了矩形的性质,等边对等角的性质,等角对等边的性质,以及勾股定理的应用,求出AE=AG是解题的关键.3、B【解析】试题解析:∴对称轴为x=-3,∵点M在对称轴上,∴M点的横坐标为-3,故选B.4、C【分析】利用不管抛多少次,硬币正面朝上的概率都是,进而得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
所以掷一枚质地均匀的硬币10次,
可能有7次正面向上;
故选:C.【点睛】本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.5、A【详解】∵桌面上放有6张卡片,卡片正面的颜色3张是绿色,2张是红色,1张是黑色,∴抽出的卡片正面颜色是绿色的概率是:.故选A.6、D【分析】根据题意得出△DEF∽△BCF,进而得出,利用点E是边AD的中点得出答案即可.【详解】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴,∵点E是边AD的中点,∴AE=DE=AD,∴.故选D.7、A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.8、B【分析】根据抛物线的对称性进行分析作答.【详解】由点A(,m),B(l,m),可得:抛物线的对称轴为y轴,∵C(2,1),∴点C关于y轴的对称点为(-2,1),故选:B.【点睛】本题考查二次函数的图象和性质,找到抛物线的对称轴是本题的关键.9、A【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】原抛物线的顶点为(0,0),向左平移3个单位,再向上平移1个单位,那么新抛物线的顶点为(−3,1);可设新抛物线的解析式为y=−4(x−h)2+k,代入得:y=−4(x+3)2+1.故选:A.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.10、D【分析】根据垂径定理可得出AE的值,再根据勾股定理即可求出答案.【详解】解:∵OE⊥AB,∴AE=BE=4,∴.故选:D.【点睛】本题考查的知识点是垂径定理,根据垂径定理得出AE的值是解此题的关键.11、D【分析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.12、B【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.二、填空题(每题4分,共24分)13、6【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【详解】解:设袋中有x个球.根据题意得,解得x=8(个),8-2=6个,∴袋中有8个白球.故答案为:6.【点睛】此题考查了概率的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、【分析】画树状图展示所有36种等可能的结果数,再找出使,即的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有36种等可能的结果数,其中使,即的有19种,
方程有解的概率是,故答案为:.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件的结果数目m,然后根据概率公式求出事件的概率.15、【分析】利用绝对值的性质和特殊角的三角函数值计算即可.【详解】原式=.故答案为:.【点睛】本题主要考查绝对值的性质及特殊角的三角函数值,掌握绝对值的性质及特殊角的三角函数值是解题的关键.16、且.【解析】试题分析:∵,.∴一元二次方程为.∵一元二次方程有实数根,∴且.考点:(1)非负数的性质;(2)一元二次方程根的判别式.17、y=2(x-3)2+1【分析】利用抛物线的顶点坐标为(0,1),利用点平移的坐标变换规律得到平移后得到对应点的坐标为(3,1),然后根据顶点式写出新抛物线的解析式.【详解】解:∵
,
∴抛物线
的顶点坐标为
(0,1),把点
(0,1)
向右平移
3
个单位后得到对应点的坐标为
(3,1)
,
∴新抛物线的解析式为y=2(x-3)2+1.
故答案为y=2(x-3)2+1.【点睛】本题考查二次函数图象与几何变换,配方法,关键是先利用配方法得到抛物线的顶点坐标.18、【分析】过D作GH⊥AB于点H,利用勾股定理求出BD和CD,再分别求出入射角∠PDG和折射角∠CDH的正弦值,根据公式可得到折射率.【详解】如图,过D作GH⊥AB于点H,在Rt△BDF中,BF=12cm,DF=16cm∴BD=cm∵四边形BFDH为矩形,∴BH=DF=16cm,DH=BF=12cm又∵BC=7cm∴CH=BH-BC=9cm∴CD=cm∵入射角为∠PDG,sin∠PDG=sin∠BDH=折射角为∠CDH,sin∠CDH=∴折射率故答案为:.【点睛】本题主要考查了勾股定理和求正弦值,解题的关键是找出图中的入射角与折射角,并计算出正弦值.三、解答题(共78分)19、1【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【详解】原式=1×+3﹣+1﹣1=1.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20、(1)76;(2)300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【分析】(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值,所以中位数落在第四组,再根据信息二中的表格数据可得出结果;
(2)先求出A小区超过平均数的人数,即(16-1)+10=25(人),再根据小区600名居民成绩能超过平均数的人数=600×,即可得出结果;
(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【详解】解:(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值.而前三组的总人数为:4+8+12=24(人),所以中位数落在第四组,第25名的成绩为75分,第26名的成绩为77分,所以中位数为76,故答案为:76;(2)根据题意得,600×=300(人),答:A小区600名居民成绩能超过平均数的人数300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.(答案不唯一,合理即可;)【点睛】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21、【分析】分别用字母A,B,C代替引导员、联络员和咨询员岗位,利用列表法求出所有等可能结果,再根据概率公式求解可得.【详解】分别用字母A,B,C代替引导员、联络员和咨询员岗位,用列表法列举所有可能出现的结果:小西小南ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表中可以看出,所有可能的结果有9种,并且这9种结果出现的可能性相等,所有可能的结果中,小南和小西恰好被分配到同一个岗位的结果有3种,即AA,BB,CC,∴小南和小西恰好被分配到同一个岗位进行志愿服务的概率==.【点睛】考查随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.22、(1)见解析;(2)见解析.【分析】(1)连接CF,EF,得到△ECF为等边三角形,即可求解:(2)连接CF,BD,交点即为P点,再连接AP即可.【详解】或即为所求;直线即为所求.【点睛】此题主要考查四边形综合的复杂作图,解题的关键是熟知正方形、等边三角形的性质.23、(1)见解析;(2)4.8cm,MN=9.6cm.【分析】(1)先由切线长定理和平行线的性质可求出∠OBC+∠OCB=90°,进而可求∠BOC=90°,然后证明∠NMC=90°,即可证明MN是⊙O的切线;(2)连接OF,则OF⊥BC,根据勾股定理就可以求出BC的长,然后根据△BOC的面积就可以求出⊙O的半径,通过证明△NMC∽△BOC,即可求出MN的长.【详解】(1)证明:∵AB、BC、CD分别与⊙O切于点E、F、G,∴∠OBC=∠ABC,∠OCB=∠DCB,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣90°=90°.∵MN∥OB,∴∠NMC=∠BOC=90°,即MN⊥MC且MO是⊙O的半径,∴MN是⊙O的切线;(2)解:连接OF,则OF⊥BC,由(1)知,△BOC是直角三角形,∴BC===10,∵S△BOC=•OB•OC=•BC•OF,∴6×8=10×OF,∴OF=4.8cm,∴⊙O的半径为4.8cm,由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°,∴△NMC∽△BOC,∴,即=,∴MN=9.6(cm).【点睛】本题主要考查的是切线的判定与性质,切线长定理,三角形内角和定理,相似三角形的判定与性质,平行线的性质,勾股定理,三角形的面积等有关知识.熟练掌握各知识点是解答本题的关键.24、(1)1;(2)1.【分析】(1)根据一元二次方程有两不相等的实数根,则根的判别式=b2-4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;
(2)把m=1代入x2-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产中介加盟合同模板
- 钢材销售运输合同范本
- 办学合同协议
- 针对个人自行采购合同模板
- 农机买卖合同协议书样本
- 项目承包合同协议书
- 口译翻译合同-纯人工翻译
- 医疗器械三方合作合同协议书范本
- 进口货物运输预约保险合同
- 水电材料购销简单合同范本
- 九年级上册-备战2024年中考历史总复习核心考点与重难点练习(统部编版)
- 健康指南如何正确护理蚕豆病学会这些技巧保持身体健康
- 老客户的开发与技巧课件
- 2024建设工程人工材料设备机械数据分类和编码规范
- 26个英文字母书写(手写体)Word版
- GB/T 13813-2023煤矿用金属材料摩擦火花安全性试验方法和判定规则
- DB31 SW-Z 017-2021 上海市排水检测井图集
- 日语专八分类词汇
- GB/T 707-1988热轧槽钢尺寸、外形、重量及允许偏差
- GB/T 33084-2016大型合金结构钢锻件技术条件
- 高考英语课外积累:Hello,China《你好中国》1-20词块摘录课件
评论
0/150
提交评论