版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3π B.6π C.9π D.12π2.△ABC中,∠ACB=90°,CD⊥AB于D,已知:cos∠A=,则sin∠DCB的值为()A. B. C. D.3.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()A. B.2 C.1.5 D.4.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是()A.14 B.-14 C.4 D.5.下列二次根式能与合并的是()A. B. C. D.6.如图,在中,点D,E分别为AB,AC边上的点,且,CD、BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是A. B. C. D.7.如图,菱形ABCD中,EF⊥AC,垂足为点H,分别交AD、AB及CB的延长线交于点E、M、F,且AE:FB=1:2,则AH:AC的值为()A. B. C. D.8.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为()A.5 B. C. D.9.如果一个正多边形的中心角为60°,那么这个正多边形的边数是()A.4 B.5 C.6 D.710.二次函数图象如图所示,下列结论:①;②;③;④;⑤有两个相等的实数根,其中正确的有()A.1个 B.2个 C.3个 D.4个11.若y=(2-m)是二次函数,则m等于()A.±2 B.2 C.-2 D.不能确定12.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.二、填空题(每题4分,共24分)13.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.14.已知二次函数y=(x-2)2+3,当x_______________时,y15.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是,那么另一个三角形的面积为.16.若点P(3,1)与点Q关于原点对称,则点Q的坐标是___________.17.三张完全相同的卡片,正面分别标有数字0,1,2,先将三张卡片洗匀后反面朝上,随机抽取一张,记下卡片上的数字m,放置一边,再从剩余的卡片中随机抽取一张卡片,记下卡片上的数字n,则满足关于x的方程x2+mx+n=0有实数根的概率为______.18.若关于x的方程x2-kx+9=0(k为常数)有两个相等的实数根,则k=_____.三、解答题(共78分)19.(8分)如图,直线和反比例函数的图象都经过点,点在反比例函数的图象上,连接.(1)求直线和反比例函数的解析式;(2)直线经过点吗?请说明理由;(3)当直线与反比例数图象的交点在两点之间.且将分成的两个三角形面积之比为时,请直接写出的值.20.(8分)现有红色和蓝色两个布袋,红色布袋中有三个除标号外完全相同的小球,小球上分别标有数字1,2,3,蓝色布袋中有也三个除标号外完全相同的小球,小球上分别标有数字2,3,4小明先从红布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从蓝布袋中随机取出一个小球,用n表示取出的球上标有的数字.(1)用列表法或树状图表示出两次取得的小球上所标数字的所有可能结果;(2)若把m、n分别作为点A的横坐标和纵坐标,求点A(m,n)在函数y=的图象上的概率.21.(8分)如图,在△ABC中,AD是BC边上的中线,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)过点A作AM⊥BC于点M,求DE:AM的值;(3)若S△FCD=5,BC=10,求DE的长.22.(10分)如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?23.(10分)如图,点是等边中边的延长线上的一点,且.以为直径作,分别交、于点、.(1)求证:是的切线;(2)连接,交于点,若,求线段、与围成的阴影部分的面积(结果保留根号和).24.(10分)如图,二次函数的图像经过,两点.(1)求该函数的解析式;(2)若该二次函数图像与轴交于、两点,求的面积;(3)若点在二次函数图像的对称轴上,当周长最短时,求点的坐标.25.(12分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<700.2870≤x<80160.3280≤x<90100.2090≤x≤10040.08(1)频数分布表中的;(2)将上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有人.26.甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)测试日期11月5日11月20日12月5日12月20日1月3日甲9697100103104乙10095100105100已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.(1)乙同学这5次数学练习成绩的平均数为分,方差为分;(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.2、C【分析】设,根据三角函数的定义结合已知条件可以求出AC、CD,利用∠BCD=∠A,即可求得答案.【详解】∵,
∴,
∵,
∴设,则,
∴,
∵,
∴,,
∴,
∴.故选:C.【点睛】本题考查直角三角形的性质、三角函数的定义、勾股定理、同角的余角相等等知识,熟记性质是解题的关键.3、B【详解】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=∠ACB=30°,∴BE=CE,∵AB∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∵∠OAE=∠FCO,AO=CO,∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=AE,∴=2,故选B.【点睛】本题考查翻折变换(折叠问题).4、A【解析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故选A.5、C【分析】化为最简二次根式,然后根据同类二次根式的定义解答.【详解】解:的被开方数是3,而=、=2、是最简二次根式,不能再化简,以上三数的被开方数分别是2、2、15,所以它们不是同类二次根式,不能合并,即选项A、B、D都不符合题意,=2的被开方数是3,与是同类二次根式,能合并,即选项C符合题意.故选:C.【点睛】本题考查同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.6、C【分析】由可得到∽,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵,∴,故不正确;B.∵,∴,故不正确;C.∵,∴∽,∽,,.,故正确;D.∵,∴,故不正确;故选C.【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.7、B【分析】连接BD,如图,利用菱形的性质得AC⊥BD,AD=BC,AD∥BC,再证明EF∥BD,接着判断四边形BDEF为平行四边形得到DE=BF,设AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后证明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性质得到AH:AC的值.【详解】解:连接BD,如图,∵四边形ABCD为菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF,由AE:FB=1:2,设AE=x,FB=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知菱形的性质及相似三角形的性质.8、C【分析】连接BE,设⊙O的半径为r,然后由垂径定理和勾股定理列方程求出半径r,最后由勾股定理依次求BE和EC的长即可.【详解】解:如图:连接BE设⊙O的半径为r,则OA=OD=r,OC=r-2∵OD⊥AB,∴∠ACO=90°∴AC=BC=AB=4,在Rt△ACO中,由勾股定理得:r2-42=(r-2)2,解得:r=5∴AE=2r=10,∵AE为⊙O的直径∴∠ABE=90°由勾股定理得:BE==6在Rt△ECB中,EC=.故答案为C.【点睛】本题主要考查了垂径定理和勾股定理,根据题意正确作出辅助线、构造出直角三角形并利用勾股定理求解是解答本题的关键.9、C【解析】试题解析:这个多边形的边数为:故选C.10、D【分析】根据图象与x轴有两个交点可判定①;根据对称轴为可判定②;根据开口方向、对称轴和与y轴的交点可判定③;根据当时以及对称轴为可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x轴有两个交点可得,此结论正确;②对称轴为,即,整理可得,此结论正确;③抛物线开口向下,故,所以,抛物线与y轴的交点在y轴的正半轴,所以,故,此结论错误;④当时,对称轴为,所以当时,即,此结论正确;⑤当时,只对应一个x的值,即有两个相等的实数根,此结论正确;综上所述,正确的有4个,故选:D.【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.11、C【解析】分析:根据二次函数的定义,自变量指数为2,且二次项系数不为0,列出方程与不等式求解则可.解答:解:根据二次函数的定义,得:m2-2=2解得m=2或m=-2又∵2-m≠0∴m≠2∴当m=-2时,这个函数是二次函数.故选C.12、C【解析】分析:根据题意得△AOB∽△COD,根据相似三角形的性质可求出CD的长.详解:∵,,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB∽△COD,∴∵AO=4m,AB=1.6m,CO=1m,∴.故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△AOB∽△COD是解题关键.二、填空题(每题4分,共24分)13、2【解析】接把点P(a,b)代入反比例函数y=即可得出结论.【详解】∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14、<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质15、25【解析】试题解析:∵两个相似三角形的相似比为2:5,∴面积的比是4:25,∵小三角形的面积为4,∴大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.16、(–3,–1)【分析】根据关于原点对称的点的规律:纵横坐标均互为相反数解答即可.【详解】根据关于原点对称的点的坐标的特点,可得:点P(3,1)关于原点过对称的点Q的坐标是(–3,–1).故答案为:(–3,–1).【点睛】本题主要考查了关于原点对称的点的坐标特点,解题时根据两个点关于原点对称时,它们的同名坐标互为相反数可直接得到答案,本题属于基础题,难度不大,注意平面直角坐标系中任意一点P(x,y),关于原点的对称点是(–x,–y),即关于原点的对称点,横纵坐标都变成相反数.17、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+mx+n=0有实数根的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有6种等可能的结果,满足关于x的方程x2+mx+n=0有实数根的有3种情况,∴满足关于x的方程x2+mx+n=0有实数根的概率为:=.故答案为:.【点睛】本题主要考查一元二次方程根的判别式与概率,掌握画树状图求得等可能的结果数以及概率公式,是解题的关键.18、±1【分析】根据方程x2-kx+9=0有两个相等的实数根,所以根的判别式△=b2-4ac=0,即k2-4×1×9=0,然后解方程即可.【详解】∵方程x2+kx+9=0有两个相等的实数根,
∴△=0,即k2-4×1×9=0,解得k=±1.
故答案为±1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.三、解答题(共78分)19、(1);(2)直线经过点,理由见解析;(1)的值为或.【分析】(1)依据直线l1:y=-2x+b和反比例数的图象都经过点P(2,1),可得b=5,m=2,进而得出直线l1和反比例函数的表达式;
(2)先根据反比例函数解析式求得点Q的坐标为,依据当时,y=-2×+5=4,可得直线l1经过点Q;
(1)根据OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:PM=1:2;②OMQ的面积:△OMP的面积=2:1,此时有QM:PM=2:1,再过M,Q分别作x轴,y轴的垂线,设点M的坐标为(a,b),根据平行线分线段成比例列方程求解得出点M的坐标,从而求出k的值.【详解】解:(1)∵直线和反比例函数的图象都经过点,.∴直线l1的解析式为y=-2x+5,反比例函数大家解析式为;(2)直线经过点,理由如下.点在反比例函数的图象上,.点的坐标为.当时,.直线经过点;(1)的值为或.理由如下:OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:PM=1:2,如图,过点M作ME⊥x轴交PC于点E,MF⊥y轴于点F;过点Q作QA⊥x轴交PC于点A,作QB⊥y轴于点B,交FM于点G,设点M的坐标为(a,b),图①∵点P的坐标为(2,1),点Q的坐标为(,4),∴AE=a-,PE=2-a,∵ME∥BC,QM:PM=1:2,∴AE:PE=1:2,∴2-a=2(a-),解得a=1,同理根据FM∥AP,根据QG:AG=QM:PM=1:2,可得(4-b):(b-1)=1:2,解得b=1.所以点M的坐标为(1,1),代入y=kx可得k=1;②OMQ的面积:△OMP的面积=2:1,此时有QM:PM=2:1,如图②,图②同理可得点M的坐标为(,2),代入y=kx可得k=.故k的值为1或.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标同时满足两函数解析式.解决问题的关键是掌握待定系数法求函数解析式以及一次函数图象上点的坐标特征,同时需要注意分类讨论思想的应用.20、(1)见解析;(2).【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果;(2)利用,的值确定满足的个数,根据概率公式求出该事件的概率.【详解】解:(1)所有可能情况如下表,且它们的可能性相nm2341(1,2)(1,3)(1,4)2(2,2)(2,3)(2,4)3(3,2)(3,3)(3,4)由列表知,(m,n)有9种可能;(2)由(1)知,所有可能情况有9种,其中满足y=的有(2,3)和(3,2)两种,∴点A(m,n)在函数y=的图象上的概率为.【点睛】本题考查了列表法求概率,反比例函数图象上点的坐标特点.用到的知识点为:概率所求情况数与总情况数之比.21、(1)证明见解析;(2);(3).【分析】(1)利用D是BC边上的中点,DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定定理,就可以证明题目结论;(2)根据相似三角形的性质和等腰三角形的性质定理,解答即可;(3)利用相似三角形的性质就可以求出三角形ABC的面积,然后利用面积公式求出AM的值,结合,即可求解.【详解】(1)∵D是BC边上的中点,DE⊥BC,∴BD=DC,∠EDB=∠EDC=90°,∵DE=DE,∴△BDE≌△EDC(SAS),∴∠B=∠DCE,∵AD=AC,∴∠ADC=∠ACB,∴△ABC∽△FCD;(2)∵AD=AC,AM⊥DC,∴DM=DC,∵BD=DC,∴,∵DE⊥BC,AM⊥BC,∴DE∥AM,∴.(3)过点A作AM⊥BC,垂足是M,∵△ABC∽△FCD,BC=2CD,∴,∵S△FCD=5,∴S△ABC=20,又∵BC=10,∴AM=1.∵DE∥AM,∴∴,∴DE=.【点睛】本题主要考查相似三角形的判定与性质定理,等腰三角形的性质定理,掌握相似三角形的判定和性质定理是解题的关键.22、(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案为1.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2.当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为3.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为3.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.23、(1)详见解析;(2)【分析】(1)已知△ABC为等边三角形,可得AC=BC,又因AC=CD,所以AC=BC=CD,即可判定△ABD为直角三角形,再根据切线的判定推出结论;(2)连接OE,分别求出△AOE、△AOC,扇形OEG的面积,根据即可求得S.【详解】(1)证明:为等边三角形,.又∴∵.∴∴,.为直径,是的切线,(2)解:连接.,,是等边三角形,.,,.,.是边长为的等边三角形,,由勾股定理,得,同理等边三角形中边上的高是,.【点睛】本题考查了切线的判定;等边三角形的判定与性质;扇形面积的计算,掌握切线的判定;等边三角形的判定与性质;扇形面积的计算是解题的关键.24、(1);(2)6;(3)【解析】(1)将M,N两点代入求出b,c值,即可确定表达式;(2)令y=0求x的值,即可确定A、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高二化学选择性必修2(人教版)同步课件 第二章 第一节 第1课时 共价键
- 【+初中语文+】课外古诗词诵读《+送元二使安西+》课件+统编版语文六年级(五四学制)上册
- 广东省佛山市南海区九江镇儒林实验学校2024-2025学年七年级上学期12月学程调查历史试题(无答案)
- 新浪微博营销案例大全(不可不看)
- 医学教材 产科常见并发症学习资料
- 海尔终端SBU系列培训-顾客满意与顾客抱怨正确应对的方法
- 3.4 用电路实现加法运算
- 国有企业2024年度意识形态工作总结
- 浙江省宁波市九校2023-2024学年高三上学期语文期末联考试卷1
- 年度合格供方名单
- 高一上学期期中考试语文试题(含答案)
- 心内科入科教育培训
- 贫血的护理查房课件
- 第五章排球正面屈体扣球教案人教版初中体育与健康七年级全一册
- 脑动脉供血不足的护理查房
- 用电负荷负荷计算
- 锅炉安全教育课件
- 《马化腾创业经历》课件
- 坚果储藏技术研究与应用
- 《医学论文写作》课件
- 《商业贿赂》课件
评论
0/150
提交评论