版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在下面的计算程序中,若输入的值为1,则输出结果为().A.2 B.6 C.42 D.122.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A. B. C. D.3.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若OA=2,则四边形CODE的周长为()A.4 B.6 C.8 D.104.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?若设每轮传染中平均一个人传染了x个人,那么x满足的方程是()A. B. C. D.5.﹣2的绝对值是()A.2 B. C. D.6.如图,双曲线与直线相交于、两点,点坐标为,则点坐标为()A. B. C. D.7.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x-1)2-3C.y=2(x+1)2-3 D.y=2(x-1)2+38.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根 B.有两个不相等的实数根C.有一个根是x=-1 D.有两个相等的实数根9.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<210.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),说法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有()个.A.1 B.2 C.3 D.411.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.A.1 B.2 C.3 D.412.如图,、、是小正方形的顶点,且每个小正方形的边长为1,则的值为()A. B.1 C. D.二、填空题(每题4分,共24分)13.如图,某河堤的横截面是梯形,,迎水面长26,且斜坡的坡比(即)为12:5,则河堤的高为__________.14.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是__________.15.已知,则的值为______.16.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.17.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF︰GH=.18.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,操作平台C离地面的高度为_______米.(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)三、解答题(共78分)19.(8分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.20.(8分)某校九年级学生某科目学期总评成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果学期总评成绩80分以上(含80分),则评定为“优秀”,下表是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075_______若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定学期总评成绩.(1)请计算小张的学期总评成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D.(1)求BC的长;(2)连接AD和BD,判断△ABD的形状,说明理由.(3)求CD的长.22.(10分)现有3个型号相同的杯子,其中A等品2个,B等品1个,从中任意取1个杯子,记下等级后放回,第二次再从中取1个杯子,(1)用恰当的方法列举出两次取出杯子所有可能的结果;(2)求两次取出至少有一次是B等品杯子的概率.23.(10分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图2所示的“”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知,,.求(1)线段与的差值是___(2)的长度.24.(10分)如图,在平面直角坐标系中,矩形ABCD的边CD在y轴上,点A在反比例函数的图象上,点B在反比例函数的图象上,AB交x轴与点E,.
(1)求k的值;(2)若,点P为y轴上一动点,当的值最小时,求点P的坐标.25.(12分)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的总蓄水量;(2)写出此函数的解析式;
(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?26.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据程序框图,计算,直至计算结果大于等于10即可.【详解】当时,,继续运行程序,当时,,继续运行程序,当时,,输出结果为42,故选C.【点睛】本题考查利用程序框图计算代数式的值,按照程序运算的规则进行计算是解题的关键.2、A【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.【详解】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,
∴共比赛场数为,
故选:A.【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、C【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【详解】解:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OA=OC=2,OB=OD,
∴OD=OC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=1.
故选:C.【点睛】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.4、D【分析】先由题意列出第一轮传染后患流感的人数,再列出第二轮传染后患流感的人数,即可列出方程.【详解】解:设每轮传染中平均一个人传染了x个人,
则第一轮传染后患流感的人数是:1+x,
第二轮传染后患流感的人数是:1+x+x(1+x),
因此可列方程,1+x+x(1+x)=1.
故选:D.【点睛】本题主要考查一元二次方程的应用,找到等量关系是解题的关键.5、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.6、B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A与B关于原点对称,点坐标为A点的坐标为(2,3).所以B选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.7、A【分析】抛物线平移不改变a的值.【详解】原抛物线的顶点为(0,0),向左平移1个单位,再向上平移1个单位,那么新抛物线的顶点为(-1,1).可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.
故选:A.8、A【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【详解】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,
∴(-1)2-4+c=0,
解得:c=3,∵所抄的c比原方程的c值小2.
故原方程中c=5,即方程为:x2+4x+5=0
则b2-4ac=16-4×1×5=-4<0,
则原方程的根的情况是不存在实数根.
故选:A.【点睛】此题主要考查了方程解的定义和根的判别式,利用有根必代的原则正确得出c的值是解题关键.9、C【解析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.10、D【分析】由抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣1时,y<0,则得到a﹣2a+c<0,则可对③进行判断;通过点(﹣5,y1)和点(,y2)离对称轴的远近对④进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=﹣1时,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正确;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④正确.故答案为D.【点睛】本题考查了二次函数图象与系数的关系,灵活运用二次函数解析式和图像是解答本题的关键..11、C【分析】根据△ABC的面积可将高求出,即⊙O上的点到AB的距离为高长的点都符合题意.【详解】过圆心向弦AB作垂线,再连接半径.设△ABE的高为h,由可求.由圆的对称性可知,有两个点符合要求;又弦心距=.∵3+2=5,故将弦心距AB延长与⊙O相交,交点也符合要求,故符合要求的点有3个.故选C.考点:(1)垂径定理;(2)勾股定理.12、C【分析】连接BC,AB=,BC=,AC=,得到△ABC是直角三角形,从而求解.【详解】解:连接BC,由勾股定理可得:AB=,BC=,AC=,∵∴△ABC是直角三角形,∴故选:C.【点睛】本题考查直角三角形,勾股定理;熟练掌握在方格中利用勾股定理求边长,同时判断三角形形状是解题的关键.二、填空题(每题4分,共24分)13、24cm【分析】根据坡比(即)为12:5,设BE=12x,AE=5x,因为AB=26cm,根据勾股定理列出方程即可求解.【详解】解:设BE=12x,AE=5x,∵AB=26cm,∴∴BE=2×12=24cm故答案为:24cm.【点睛】本题主要考查的是坡比以及勾股定理,找出图中的直角三角形在根据勾股定理列出方程即可求解.14、【分析】根据题意可知密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,直接利用概率公式求解即可.【详解】解:∵密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,∴小丽能一次支付成功的概率是.故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、【分析】设=k,用k表示出a、b、c,代入求值即可.【详解】解:设=k,∴a=2k,b=3k,c=4k,∴==.故答案是:.【点睛】本题考查了比例的性质,涉及到连比时一般假设比值为k,这是常用的方法.16、1.【分析】根据关系式,令h=0即可求得t的值为飞行的时间.【详解】解:依题意,令得:∴得:解得:(舍去)或∴即小球从飞出到落地所用的时间为故答案为1.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单.17、3:2.【详解】解:
过F作FM⊥AB于M,过H作HN⊥BC于N,
则∠4=∠5=90°=∠AMF
∵四边形ABCD是矩形,
∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,
∴四边形AMFD是矩形,
∴FM∥AD,FM=AD=BC=3,
同理HN=AB=2,HN∥AB,
∴∠2=∠2,
∵HG⊥EF,
∴∠HOE=90°,
∴∠2+∠GHN=90°,
∵∠3+∠GHN=90°,
∴∠2=∠3=∠2,
即∠2=∠3,∠4=∠5,
∴△FME∽△HNG,∴EF:GH=AD:CD=3:2.
故答案为:3:2.考点:2.相似三角形的判定与性质;2.矩形的性质.18、7.6【分析】作于,于,如图2,易得四边形为矩形,则,,再计算出,在中利用正弦可计算出,然后计算即可.【详解】解:作于E,于,如图2,∴四边形为矩形,∴,,∴,∴在中,,∴,∴,∴操作平台离地面的高度为.故答案是:.【点睛】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用三角函数的定义进行几何计算.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)用列表法或画出树状图分析数据、列出可能的情况即可.(2)A、B、D既是轴对称图形,也是中心对称图形,C是轴对称图形,不是中心对称图形.列举出所有情况,让两次摸牌的牌面图形既是中心对称图形又是轴对称图形的情况数除以总情况数即为所求的概率.【详解】(1)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种.故所求概率是.考点:1.列表法与树状图法;2.轴对称图形;3.中心对称图形.20、(1)小张的期末评价成绩为81分.(2)最少考85分才能达到优秀【分析】(1)直接利用加权平均数的定义求解可得;(2)设小王期末考试成绩为x分,根据加权平均数的定义列出不等式求出最小整数解即可.【详解】解:(1)小张的期末评价成绩为=81(分);答:小张的期末评价成绩为81分.(2)设小王期末考试成绩为x分,根据题意,得:,解得x≥84,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.21、(1);(2)△ABD是等腰直角三角形,见解析;(3)【解析】(1)由题意根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC的长;(2)根据圆周角定理得到∠ADB=90°,再根据角平分线定义AD=BD,进而即可判断△ABD为等腰直角三角形;(3)由题意过点A作AE⊥CD,垂足为E,可知,分别求出CE和DE的长即可求出CD的长.【详解】解:(1)∵AB是直径∴∠ACB=∠ADB=90o在Rt△ABC中,.(2)连接AD和BD,∵CD平分∠ACB,∠ACD=∠BCD,∴即有AD=BD∵AB为⊙O的直径,∴∠ADB=90°,∴△ABD是等腰直角三角形.(3)过点A作AE⊥CD,垂足为E,在Rt△ACE中,∵CD平分∠ACB,且∠ACB=90o∴CE=AE=AC=在Rt△ABD中,AD2+BD2=AB2,得出在Rt△ADE中,∴.【点睛】本题考查圆的综合问题,熟练掌握圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.以及其推论半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径进行分析.22、(1)见解析;(2).【分析】(1)根据已知条件画出树状图得出所有等情况数即可;(2)找出两次取出至少有一次是B等品杯子的情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画树状图如下:由图可知,共有9中等可能情况数;(2)∵共有9中等可能情况数,其中两次取出至少有一次是B等品杯子的有5种,∴两次取出至少有一次是B等品杯子的概率是.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比。23、96【分析】如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,根据轴对称的性质得:D'E'=DC=E'F'=9,表示GH,EH,BE的长,证明△EGH∽△EAB,则,可得x的值,即可求出线段、及FG的长,故可求解.【详解】(1)如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,由轴对称的性质得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16−(9+x)=7−x,即C'D'=DF=7−x=F'G',∴FG=7−x,∴GH=9−(7−x)=2+x,EH=16−x−(9+x)=7−2x,∴EH∥AB,∴△EGH∽△EAB,∴,∴,解得x=1或31(舍),、及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案为:9;(2)由(1)得FG=7−x=7-1=6.【点睛】本题考查了图形的拼剪,轴对称的性质,矩形、直角三角形、相似三角形等相关知识,积累了将实际问题转化为数学问题经验,渗透了数形结合的思想,体现了数学思想方法在现实问题中的应用价值.24、(1);(2)(0,)【分析】(1)设B(a,b),由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,进而可得ab=6,再根据可得,再设A(m,n),可得,再根据即可求得k的值;(2)先根据求得点A、B的坐标,再利用轴对称找到符合题意的点P,求出直线的函数关系式,进而可求出点P的坐标.【详解】解:(1)设B(a,b),∵B在反比例函数的图象上,∴b=,∴ab=6,即,∵.∴,∴设A(m,n),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业文印服务协议协议2024全条款版A版
- 2024建筑施工安全简单协议书范本
- 指导司机判断复习测试有答案
- 2025年环氧大豆油项目申请报告
- 2025年苯酐催化剂项目规划申请报告
- 2025年绘图、计算及测量仪器项目提案报告模范
- 2025年精喹禾灵项目申请报告模板
- 2025年沙林树脂项目申请报告模式
- 新疆乌鲁木齐仟叶学校2025届中考生物四模试卷含解析
- 2025届红桥区达标名校中考生物全真模拟试卷含解析
- 江苏省建筑节能分部工程施工方案范本
- 危险化学品事故应急预案
- 高考写作指导:《登泰山记》《我与地坛》材料
- 同意未成年出国声明 - 中英
- 人工造林项目投标方案
- 数字经济学导论-全套课件
- 2023版(五级)脊柱按摩师技能认定考试题库大全-上(单选题部分)
- 教育系统自然灾害类突发公共事件应急预案
- 2022电气技术员考试题库及答案
- 鲁教版化学八年级上册全册教学课件(五四制)
- 窦占龙憋宝:九死十三灾
评论
0/150
提交评论