山东省16地市2025届九年级数学第一学期期末联考试题含解析_第1页
山东省16地市2025届九年级数学第一学期期末联考试题含解析_第2页
山东省16地市2025届九年级数学第一学期期末联考试题含解析_第3页
山东省16地市2025届九年级数学第一学期期末联考试题含解析_第4页
山东省16地市2025届九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省16地市2025届九年级数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2 B.3 C.4 D.52.一元二次方程的二次项系数、一次项系数和常数项分别是()A.3,2,1 B.3,2,-1 C.3,-2,1 D.3,-2,-13.抛物线先向下平移1个单位,再向左平移2个单位,所得的抛物线是()A.. B.C. D.4.如图所示,△的顶点是正方形网格的格点,则的值是()A. B. C. D.5.在半径为3cm的⊙O中,若弦AB=3,则弦AB所对的圆周角的度数为()A.30° B.45° C.30°或150° D.45°或135°6.已知关于的二次函数的图象在轴上方,并且关于的分式方程有整数解,则同时满足两个条件的整数值个数有().A.2个 B.3个 C.4个 D.5个7.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠38.如图,BC是⊙O的弦,OA⊥BC,∠AOB=55°,则∠ADC的度数是()A.25° B.55° C.45° D.27.5°9.已知一元二次方程,,则的值为()A. B. C. D.10.对于两个不相等的实数,我们规定符号表示中的较大值,如:,按照这个规定,方程的解为()A.2 B.C.或 D.2或11.下列各数中是无理数的是()A.0 B. C. D.0.512.根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.14.小亮和他弟弟在阳光下散步,小亮的身高为米,他的影子长米.若此时他的弟弟的影子长为米,则弟弟的身高为________米.15.如图,在平面直角坐标系中,点,点,作第一个正方形且点在上,点在上,点在上;作第二个正方形且点在上,点在上,点在上…,如此下去,其中纵坐标为______,点的纵坐标为______.16.如图,、是⊙上的两点,若,是⊙上不与点、重合的任一点,则的度数为__________.17.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.18.在中,,为的中点,则的长为__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点B的坐标是(2,2),将线段OB绕点O顺时针旋转120°,点B的对应点是点B1.(1)①求点B绕点O旋转到点B1所经过的路程长;②在图中画出1,并直接写出点B1的坐标是;(2)有7个球除了编号不同外,其他均相同,李南和王易设计了如下的一个规则:装入不透明的甲袋,装入不透明的乙袋,李南从甲袋中,王易从乙袋中,各自随机地摸出一个球(不放回),把李南摸出的球的编号作为横坐标x,把王易摸出的球的编号作为纵坐标y,用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(3)李南和王易各取一次小球所确定的点(x,y)落在1上的概率是.20.(8分)如图,是⊙的直径,,是的中点,连接并延长到点,使.连接交⊙于点,连接.(1)求证:直线是⊙的切线;(2)若,求⊙的半径.21.(8分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.22.(10分)某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?23.(10分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)将绕着点顺时针旋转后得到,请在图中画出;(2)若把线段旋转过程中所扫过的扇形图形围成一个圆锥的侧面,求该圆锥底面圆的半径(结果保留根号).24.(10分)在平面直角坐标系xOy中,抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P是第一象限抛物线上的一个动点,连接CP交x轴于点E,过点P作PK∥x轴交抛物线于点K,交y轴于点N,连接AN、EN、AC,设点P的横坐标为t,四边形ACEN的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,点F是PC中点,过点K作PC的垂线与过点F平行于x轴的直线交于点H,KH=CP,点Q为第一象限内直线KP下方抛物线上一点,连接KQ交y轴于点G,点M是KP上一点,连接MF、KF,若∠MFK=∠PKQ,MP=AE+GN,求点Q坐标.25.(12分)如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=11,CD=1.求⊙O半径的长.26.综合与探究如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据平行线分线段成比例定理即可得出答案.【详解】∵AD∥BE∥CF,∴.∵AB=3,BC=6,DE=2,∴,∴EF=1.故选C.【点睛】本题考查了平行线分线段成比例定理,掌握定理的内容是解题的关键.2、D【解析】根据一元二次方程一般式的系数概念,即可得到答案.【详解】一元二次方程的二次项系数、一次项系数和常数项分别是:3,-2,-1,故选D.【点睛】本题主要考查一元二次方程一般式的系数概念,掌握一元二次方程一般式的系数,是解题的关键.3、A【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将抛物线y=3x2先向向下平移1个单位可得到抛物线y=3x2-1;

由“左加右减”的原则可知,将抛物线y=3x2-1先向左平移2个单位可得到抛物线.

故选A.【点睛】本题考查二次函数图象与几何变换,解题的关键是掌握函数图象平移的法则“左加右减,上加下减”的原则.4、B【分析】过点C作CD⊥AB,利用间接法求出△ABC的面积,利用勾股定理求出AB、BC的长度,然后求出CD的长度,即可得到∠B的度数,然后得到答案.【详解】解:如图,过点C作CD⊥AB,∴,∵,,又∵,∴,在Rt△BCD中,,∴,∴;故选:B.【点睛】本题考查了特殊角的三角函数值,勾股定理与网格问题,解题的关键是作出辅助线正确构造直角三角形,利用三角函数值进行求解.5、D【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=3,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数.6、B【解析】关于的二次函数的图象在轴上方,确定出的范围,根据分式方程整数解,确定出的值,即可求解.【详解】关于的二次函数的图象在轴上方,则解得:分式方程去分母得:解得:当时,;当时,(舍去);当时,;当时,;同时满足两个条件的整数值个数有3个.故选:B.【点睛】考查分式方程的解,二次函数的图象与性质,熟练掌握分式方程以及二次函数的性质是解题的关键.7、D【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件可得关于x的不等式组,解不等式组即可.【详解】由题意,要使在实数范围内有意义,必须且x≠3,故选D.8、D【分析】欲求∠ADC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【详解】∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB(垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=55°,∴∠ADC=27.5°.故选:D.【点睛】本题考查垂径定理、圆周角定理.关键是将证明弧相等的问题转化为证明所对的圆心角相等.9、B【分析】根据题干可以明确得到p,q是方程的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程的两根,∴p+q=,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.10、D【分析】分两种情况讨论:①,②,根据题意得出方程求解即可.【详解】有意义,则①当,即时,由题意得,去分母整理得,解得经检验,是分式方程的解,符合题意;②当,即时,由题意得,去分母整理得,解得,,经检验,,是分式方程的解,但,∴取综上所述,方程的解为2或,故选:D.【点睛】本题考查了新型定义下的分式方程与解一元二次方程,理解题意,进行分类讨论是解题的关键.11、C【分析】根据无理数的定义,分别进行判断,即可得到答案.【详解】解:根据题意,是无理数;0,,0.5是有理数;故选:C.【点睛】本题考查了无理数的定义,解题的关键是熟记无理数的定义进行解题.12、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】亿=3.0924×1012,

故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(每题4分,共24分)13、.【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC就可以结合勾股定理求出AC的长了.【详解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(1)1.∴OA=.故⊙O的半径为.故答案为:.14、1.4【解析】∵同一时刻物高与影长成正比例,

∴1.75:2=弟弟的身高:1.6,

∴弟弟的身高为1.4米.故答案是:1.4.15、【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:,解得:所以直线仍的解析式是:设C1的横坐标为x,则纵坐标为∵正方形OA1C1B1∴x=y,即,解得∴点C1的纵坐标为同理可得:点C2的纵坐标为=∴点Cn的纵坐标为.故答案为:,.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.16、或【分析】根据题意,可分为两种情况:点C正在优弧和点C在劣弧,分别求出答案即可.【详解】解:当点C在优弧上,则∵,∴;当点C在劣弧上时,则∵,∴,∴;∴的度数为:40°或140°;故答案为:40°或140°.【点睛】本题考查了圆周角定理,解题的关键是掌握同弧所对的圆周角等于圆心角的一半,注意分类讨论进行解题.17、k>﹣1且k≠1.【解析】由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=1∴k≠1,∴k的取值范围是:k>﹣1且k≠1.故答案为:k>﹣1且k≠1.【点睛】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.18、5【分析】先根据勾股定理的逆定理判定△ABC是直角三角形,再根据斜中定理计算即可得出答案.【详解】∵∴∴△ABC为直角三角形,AB为斜边又为的中点∴故答案为5.【点睛】本题考查的是勾股定理的逆定理以及直角三角形的斜中定理,解题关键是根据已知条件判断出三角形是直角三角形.三、解答题(共78分)19、(1)①;②见解析,B1的坐标是(0,﹣4);(2)见详解;(3)【分析】(1)①根据勾股定理算出OB的长,再根据弧长公式算出线段OB绕着O点旋转到B1所经过的路径长;②由①得∠BOH=30°,结合图象得到旋转后的B1的坐标;(2)利用树状图得到所有可能的结果;(3)计算各点到原点的距离,可判断点落在1上的结果,即可求出概率.【详解】解:(1)①作BH⊥x轴于点H,∵点B的坐标是(2,2),∴BH=2,OH=2,∴OB==4,∴B绕点O旋转到点B1所经过的路程长==;②如图,1为所作,过B作BH⊥x轴,∵tan∠BOH=,∴∠BOH=30°,又∵∠BOB1=120°,∴∠HOB1=90°,∴点B1在y轴负半轴上由旋转性质可知OB=OB1==4,所以点B1的坐标是(0,﹣4);(2)画树状图为:共有12种等可能的结果:分别为(4,0)(4,-1)(4,-2)(4,-6)()()()()(,0)(,-1)(,-2)(,-6);(3)(4,0)到原点的距离为:4,(4,-1)到原点的距离为:=,(4,-2)到原点的距离为:=,(4,-6)到原点的距离为=,()到原点的距离是,()到原点的距离是=,()到原点的距离为:=4,()到原点的距离是=4,(,0)到原点的距离为,(,-1)到原点的距离为=,(,-2)到原点的距离是=,(,-6)到原点的距离为=,点(x,y)落在1上的结果数为2,所以点(x,y)落在1上的概率==.【点睛】本题考查作图—旋转变换、旋转性质、概率问题树状图、弧长等问题,难度适中.20、(1)见解析;(2).【分析】(1)连OC,根据“,AB是⊙O的直径”可得CO⊥AB,进而证明△OEC≌△BEF(SAS)即可得到∠FBE=∠COE=90°,从而证明直线是⊙的切线;(2)由(1)可设⊙O的半径为r,则AB=2r,BF=r,在Rt∆ABF运用沟谷定理即可得.【详解】(1)连OC.∵,AB是⊙O的直径∴CO⊥AB∵E是OB的中点∴OE=BE又∵CE=EF,∠OEC=∠BEF∴△OEC≌△BEF(SAS)∴∠FBE=∠COE=90°即AB⊥BF∴BF是⊙O的切线.(2)由(1)知=90°设⊙O的半径为r,则AB=2r,BF=r在Rt∆ABF中,由勾股定理得;,即,解得:r=∴⊙O的半径为.【点睛】本题考查了切线的证明及圆中的计算问题,熟知切线的证明方法及题中的线段角度之间的关系是解题的关键.21、(1)证明见解析;(2)①证明见解析;②;③1.【解析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【详解】(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG=BP,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1.【点睛】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.22、(1)20%;(2)每千克应涨价5元.【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.23、(1)见解析;(2)【分析】(1)先根据旋转变换确定A1、B1、C1,然后顺次连接即可;(2)线段BC旋转过程中扫过的面积为扇形BCC1的面积,然后求扇形的面积即可.【详解】解:(1)如图所示,所求;(2)在中,∵∴答:该圆锥底面圆的半径为.【点睛】本题考查了旋转变换以及扇形面积,根据旋转变换做出是解答本题的关键.24、(1)y=x2﹣2x﹣3;(2)S=t2+t;(3)Q(,).【分析】(1)函数的表达式为:y=(x+1)(x﹣3),即可求解;(2)tan∠PCH===,求出OE=,利用S=S△NCE+S△NAC,即可求解;(3)证明△CNP≌△KRH,求出点P(4,5)确定tan∠QKP===4﹣m=tan∠QPK==NG,最后计算KT=MT=(),FT=4﹣(+),tan∠MFT==4﹣m,即可求解.【详解】(1)函数的表达式为:y=(x+1)(x﹣3)=x2﹣2x﹣3;(2)过点P作PH⊥y轴交于点H,设点P(t,t2﹣2t﹣3),CN=t2﹣2t﹣3+3=t2﹣2t,∴tan∠PCH===,,解得:OE=,S=S△NCE+S△NAC=AE×CN=t2+t;(3)过点K作KR⊥FH于点R,∵KH=CP,∠NCP=∠H,∠R=∠PNC=90°,∴△CNP≌△KRH,∴PN=KR=NS,∵点F是PC中点,SF∥NP,∴PN=KR=NS=CN,即t=(t2﹣2t﹣3+3),解得:t=0或4(舍去0),点P(4,5),点K、P时关于对称轴的对称点,故点K(﹣2,5),∵OE∥PN,则,故OE=,同理AE=,设点Q(m,m2﹣2m﹣3),过点Q作WQ⊥KP于点W,WQ=5﹣(m2﹣2m﹣3)=﹣m2+2m+8,WK=m+2,tan∠QKP===4﹣m=tan∠QPK==NG,则NG=8﹣2m,MP=AE+GN=(8﹣2m)=﹣m+,KM=KP﹣MP=,过点F作FL⊥KP于点L,点F(2,1),则FL=LK=4,则∠LKF=45°,∵∠MFK=∠PKQ,tan∠MFK=tan∠QKP=4﹣m,过点M作MT⊥FK于点T,则KT=MT=(),FT=4﹣(),tan∠MFT==4﹣m,解得:m=11或(舍去11),故点Q(,).【点睛】考查了二次函数综合运用,涉及到一次函数、三角形全等、图形的面积计算、解直角三角形等,其中(3),运用函数的观点,求解点的坐标.25、2【解析】试题分析:连接OA,根据垂径定理求出AD=6,∠ADO=90°,根据勾股定理得出方程,求出方程的解即可.试题解析:连接AO,∵点C是弧AB的中点,半径OC与AB相交于点D,∴OC⊥AB,∵AB=11,∴AD=BD=6,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论