版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省运城市新绛县数学九上期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列四个点,在反比例函数y=图象上的是(
)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)2.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.3.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1004.以下五个图形中,是中心对称图形的共有()A.2个 B.3个 C.4个 D.5个5.将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是()A. B. C. D.6.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是弧AB的中点,连接AC、BC,则图中阴影部分面积是()A. B.C. D.7.用一个圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的高为()A. B. C. D.8.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.9.如图,点P在△ABC的边AC上,下列条件中不能判断△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D.CB2=CP•CA10.已知抛物线的解析式为,则下列说法中错误的是()A.确定抛物线的开口方向与大小B.若将抛物线沿轴平移,则,的值不变C.若将抛物线沿轴平移,则的值不变D.若将抛物线沿直线:平移,则、、的值全变二、填空题(每小题3分,共24分)11.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________.12.抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为_____.13.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是.14.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.15.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.16.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.17.若二次函数的图象开口向下,则_____0(填“=”或“>”或“<”).18.当_____时,在实数范围内有意义.三、解答题(共66分)19.(10分)如图所示,是的直径,为弦,交于点.若,,.(1)求的度数;(2)求的长度.20.(6分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.21.(6分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.22.(8分)如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.(1)求证:CD是⊙O的切线;(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.23.(8分)一个布袋中有红、黄、绿三种颜色的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下它的颜色.(1)试用树形图或列表法中的一种列举出这两次摸出球的颜色所有可能的结果;(2)求两次摸出球中至少有一个绿球的概率.24.(8分)已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4,求AB的长.25.(10分)如图,直线与⊙相离,于点,与⊙相交于点,.是直线上一点,连结并延长交⊙于另一点,且.(1)求证:是⊙的切线;(2)若⊙的半径为,求线段的长.26.(10分)如图所示,∠DBC=90°,∠C=45°,AC=2,△ABC绕点B逆时针旋转60°得到△DBE,连接AE.(1)求证:△ABC≌△ABE;(2)连接AD,求AD的长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】由可得xy=6,故选D.2、D【分析】可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A.一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B.由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C.由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D.由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.【点睛】本题考查了抛物线和直线的性质,用假设法来解答这种数形结合题是一种很好的方法.3、A【解析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.4、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】解:从左起第2、4、5个图形是中心对称图形.故选:B.【点睛】本题考查了中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.5、B【分析】把配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2=,所以阴影部分面积是扇形面积减去四边形面积即.故选A.7、B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【详解】解:设此圆锥的底面半径为r,由题意得:,解得r=2cm,故这个圆锥的高为:.故选:B.【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.8、D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.9、D【分析】观察图形可得,与已经有一组角∠重合,根据三角形相似的判定定理,可以再找另一组对应角相等,或者∠的两条边对应成比例.注意答案中的、两项需要按照比例的基本性质转化为比例式再确定.【详解】解:项,∠=∠,可以判定;项,∠=∠,可以判定;项,,,可以判定;项,,,不能判定.【点睛】本题主要考查了相似三角形的判定定理,结合图形,按照定理找到条件是解答关键.10、D【分析】利用二次函数的性质对A进行判断;利用二次函数图象平移的性质对B、C、D进行判断.【详解】解:A、确定抛物线的开口方向与大小,说法正确;B、若将抛物线C沿y轴平移,则抛物线的对称轴不变,开口大小、开口方向不变,即a,b的值不变,说法正确;C、若将抛物线C沿x轴平移,抛物线的开口大小、开口方向不变,即a的值不变,说法正确;D、若将抛物线C沿直线l:y=x+2平移,抛物线的开口大小、开口方向不变,即a不变,b、c的值改变,说法错误;故选:D.【点睛】本题考查了二次函数图象与几何变换,由于抛物线平移后的形状不变,所以a不变.二、填空题(每小题3分,共24分)11、【分析】需要三步完成,所以采用树状图法比较简单,根据树状图可以求得所有等可能的结果与出现三次正面朝上的情况,再根据概率公式求解即可.【详解】画树状图得:∴一共有共8种等可能的结果;出现3次正面朝上的有1种情况.∴出现3次正面朝上的概率是故答案为.点评:此题考查了树状图法概率.注意树状图法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.12、y=﹣+1【分析】直接根据平移规律作答即可.【详解】解:抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为y=﹣x2+1,故答案为:y=﹣x2+1.【点睛】本题考查了函数图像的平移.要求熟练掌握平移的规律:左加右减,上加下减,并用规律求解析式.13、6米.【解析】试题分析:在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.试题解析:在Rt△ABC中,BC=3米,tanA=1:;∴AC=BC÷tanA=3米,∴AB=米.考点:解直角三角形的应用.14、1【分析】由正方形的性质得出△ABD是等腰直角三角形,由EF∥BD,得出△AEF是等腰直角三角形,由折叠的性质得△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,则GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),由四边形BEFD与△AHG的周长差为5-2列出方程解得x=4,即可得出结果.【详解】∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∵EF∥BD,∴△AEF是等腰直角三角形,由折叠的性质得:△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,∴GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),∵四边形BEFD与△AHG的周长差为5-2,∴x+(x-1)+2-[2(x-2)+(x-2)]=5-2,解得:x=4,∴正方形ABCD的周长为:4×4=1,故答案为:1.【点睛】本题考查了折叠的性质、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握折叠与正方形的性质以及等腰直角三角形的性质是解题的关键.15、(1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用16、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【点睛】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键17、<【解析】由二次函数图象的开口向下,可得.【详解】解:∵二次函数的图象开口向下,∴.故答案是:<.【点睛】考查了二次函数图象与系数的关系.二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;还可以决定开口大小,越大开口就越小.18、x≥1且x≠1【分析】二次根式及分式有意义的条件:被开方数为非负数,分母不为1,据此解答即可.【详解】∵有意义,∴x≥1且﹣1≠1,∴x≥1且x≠1时,在实数范围内有意义,故答案为:x≥1且x≠1【点睛】本题考查二次根式和分式有意义的条件,要使二次根式有意义,被开方数为非负数;要使分式有意义分母不为1.三、解答题(共66分)19、(1)120°;(2)1.【分析】(1)首先根据∠BAO=30°,AO∥BC利用两直线平行,内错角相等求得∠CBA的度数,然后利用圆周角定理求得∠AOC的度数,从而利用邻补角的定义求得∠AOD的度数.(2)首先根据,求得,在中,求得OE的值,将OE,OC的值代入即可得出.【详解】解:(1),,,,.(2),,.在中,.,.【点睛】本题考查了解直角三角形及圆周角定理,构造直角三角形是解题的关键.20、(1)证明见解析;(2).【分析】(1)求出∠ADB的度数,求出∠ABD+∠DBC=90,根据切线判定推出即可;(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.【详解】(1)是的直径,,,,,,,是的切线;(2)连接,,且,,,,,,,,,的半径为,阴影部分的面积扇形的面积三角形的面积.【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.21、(1)见解析;(2)3【分析】(1)只要证明∠DBF=∠DAC,即可判断.(2)利用相似三角形的性质即可解决问题.【详解】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴,∴BF=AC=3【点睛】本题考查相似三角形的性质和判定,同角的余角相等,直角三角形两锐角互余等知识,解题的关键是正确寻找相似三角形,利用新三角形的性质解决问题22、(1)证明见解析;(2)BE的长是【分析】(1)连接OC,根据条件先证明OC∥AD,然后证出OC⊥CD即可;(2)先利用勾股定理求出AE的长,再根据条件证明△ECO∽△EDA,然后利用对应边成比例求出OC的长,再根据BE=AE﹣2OC计算即可.【详解】(1)连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线.(2)在Rt△ADE中,由勾股定理得:AE==15,∵OC∥AD,∴△ECO∽△EDA,∴∴解得:OC=,∴BE=AE﹣2OC=15﹣2×=,答:BE的长是.23、(1)详见解析;(2)【分析】(1)利用树状图列举出所有可能,注意是放回小球再摸一次;(2)列举出符合题意的各种情况的个数,再根据概率公式解答即可.【详解】(1)列树状图如下:故(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿)共9种情况(2)由树状图可知共有3×3=9种可能,“两次摸出球中至少有一个绿球”的有5种,所以概率是:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)证明见解析;(2)AB=6.【分析】(1)根据圆内接四边形的性质得出∠DEC=∠A,根据等腰三角形的性质得出∠A=∠C,求出∠DEC=∠C,根据等腰三角形的判定得出即可;
(2)连接BD,根据圆周角定理求出∠ADB=90°,根据等腰三角形的性质求出AC长,再求出△DEC∽△BAC,得出比例式,即可求出答案.【详解】(1)证明:∵A、B、E、D四点共圆,∴∠DEC=∠A,∵AB=BC,∴∠A=∠C,∴∠DEC=∠C,∴ED=DC;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,即BD⊥AC,∵AB=BC,CD=6,∴AD=DC=6,∴AC=12,∵∠A=∠DEC,∠C=∠C,∴△DEC∽△BAC,∴,∴,解得:BC=6,∵AB=BC,∴AB=6.【点睛】本题考查了圆内接四边形的性质,圆周角定理,相似三角形的性质和判定,等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络伦理与道德-第1篇-洞察分析
- 虚拟现实训练成本效益分析-洞察分析
- 无人零售技术发展研究-洞察分析
- 线缆绝缘老化检测方法-洞察分析
- 虚假新闻识别与治理-洞察分析
- 《大数据存储技术与应用》 课件 项目一-任务二 走进大数据存储技术
- 文化产品自动化生产线构建-洞察分析
- 医疗器械合作的意向书(5篇)
- 《建筑节能的措施》课件
- 创意美术教育课程设计的多维探索
- 《中国封建社会》课件
- 药物代谢动力学-中国药科大学中国大学mooc课后章节答案期末考试题库2023年
- 形式逻辑期末考试含答案
- 血液科护士的营养与膳食指导
- 自媒体账号运营的用户画像分析技巧
- 医院门窗工程施工方案与施工方法
- 短视频实习运营助理
- 2024年中化石油福建有限公司招聘笔试参考题库含答案解析
- 互联网医疗服务创业计划书
- 对加快推进新型工业化的认识及思考
- 上海交通大学2016年622物理化学(回忆版)考研真题
评论
0/150
提交评论