版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省肇源县数学九上期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则()A. B. C. D.2.菱形具有而矩形不具有的性质是()A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直3.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程()A. B. C.D.4.如图,⊙O的弦AB⊥OC,且OD=2DC,AB=,则⊙O的半径为()A.1 B.2 C.3 D.95.抛物线的顶点坐标为A. B. C. D.6.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B. C. D.28.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. B.C. D.9.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.10.二次函数的图象与x轴的交点的横坐标分别为﹣1和3,则的图象与x轴的交点的横坐标分别为()A.1和5 B.﹣3和1 C.﹣3和5 D.3和5二、填空题(每小题3分,共24分)11.写出一个以-1为一个根的一元二次方程.12.在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是____________.13.若,则x=__.14.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.15.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.16.如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.18.如图,在平面直角坐标系中有两点和,以原点为位似中心,相似比为,把线段缩短为线段,其中点与点对应,点与点对应,且在y轴右侧,则点的坐标为________.三、解答题(共66分)19.(10分)用适当的方法解方程:.20.(6分)如图,在某广场上空飘着一只气球P,A、B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P的高度(精确到0.1米).21.(6分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,3),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,并求满足条件的点P的坐标;(3)连接OA,OB,求△OAB的面积.22.(8分)解方程:x2﹣6x+8=1.23.(8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.24.(8分)已知的半径长为,弦与弦平行,,,求间的距离.25.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?26.(10分)如图,在由边长为1个单位长度的小正方形组成的网格图中,△ABC的顶点都在网格线交点上.(1)图中AC边上的高为个单位长度;(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):①以点C为位似中心,把△ABC按相似比1:2缩小,得到△DEC;②以AB为一边,作矩形ABMN,使得它的面积恰好为△ABC的面积的2倍.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据两组对应角相等可判断△AEG∽△ACB,△AEF∽△ACD,再得出线段间的比例关系进行计算即可得出结果.【详解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,
∴△AEG∽△ACB.
∴.
∵∠EAF=∠CAD,∠AEF=∠C,
∴△AEF∽△ACD.
∴又,∴.∴故选C.【点睛】本题考查了相似三角形的判定,解答本题,要找到两组对应角相等,再利用相似的性质求线段的比值.2、D【分析】根据菱形和矩形都是平行四边形,都具备平行四边形性质,再结合菱形及矩形的性质,对各选项进行判断即可.【详解】解:因为菱形和矩形都是平行四边形,都具备平行四边形性质,即对边平行而且相等,对角相等,对角线互相平分.、对边平行且相等是菱形矩形都具有的性质,故此选项错误;、对角相等是菱形矩形都具有的性质,故此选项错误;、对角线互相平分是菱形矩形都具有的性质,故此选项错误;、对角线互相垂直是菱形具有而矩形不具有的性质,故此选项正确;故选:D.【点睛】本题考查了平行四边形、矩形及菱形的性质,属于基础知识考查题,同学们需要掌握常见几种特殊图形的性质及特点.3、D【解析】试题解析:设从2008年起我省森林覆盖率的年平均增长率为x,依题意得60.05%(1+x)2=1%.
即60.05(1+x)2=1.
故选D.4、C【分析】根据垂径定理可得AD=AB,由OD=2DC可得OD=OC=OA,利用勾股定理列方程求出OA的长即可得答案.【详解】∵⊙O的弦AB⊥OC,AB=,∴AD=AB=,∵OD=2DC,OA=OC,OC=OD+DC,∴OD=OC=OA,∴OA2=(OA)2+()2,解得:OA=3,(负值舍去),故选:C.【点睛】本题主要考查垂径定理及勾股定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧;熟练掌握垂径定理是解题关键.5、B【分析】利用顶点公式,进行计算【详解】顶点坐标为故选B.【点睛】本题考查二次函数的性质,熟练运用抛物线顶点的公式是解题关键.6、D【分析】根据轴对称图形、中心对称图形的定义即可判断.【详解】A、是轴对称图形,不符合题意;B、是中心对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,故符合题意.故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.7、A【详解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圆中同弧所对的圆周角,∴∠D=∠C=10°.∵AD为直径,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故选A.8、D【解析】第一个月是560,第二个月是560(1+x),第三月是560(1+x)2,所以第一季度总计560+560(1+x)+560(1+x)2=1850,选D.9、A【解析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是黄灯的概率为多少.【详解】根据题意可知,每分钟内黄灯亮的时间为秒,每分钟内黄灯亮的概率为,故抬头看是黄灯的概率为.故选A.【点睛】本题主要考查求随机事件概率的方法,熟悉掌握随机事件A的概率公式是关键.10、A【分析】根据二次函数图象的平移规律可得交点的横坐标.【详解】解:∵二次函数y=(x+m)2+n的图象与x轴的交点的横坐标分别为﹣1和3,∴y=(x+m﹣2)2+n的图象与x轴的交点的横坐标分别为:﹣1+2=1和3+2=5,故选:A.【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用平移的性质和点的坐标平移的性质解答.二、填空题(每小题3分,共24分)11、答案不唯一,如【解析】试题分析:根据一元二次方程的根的定义即可得到结果.答案不唯一,如考点:本题考查的是方程的根的定义点评:解答本题关键的是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.12、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,=0.2,
解得,a=1.
故估计a大约有1个.
故答案为:1.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13、【分析】用直接开平方法解方程即可.【详解】,,,故答案为:.【点睛】此题考查一元二次方程的解法,依据方程的特点选择恰当的方法.14、直线x=2【解析】试题分析:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==1考点:二次函数的性质15、【分析】直接根据概率公式求解.【详解】解:随机摸出一个球是红色的概率=.
故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16、【分析】根据圆的面积公式和扇形的面积公式分别求得各自的面积,再根据概率公式即可得出答案.【详解】∵圆的面积是:,扇形的面积是:,∴小球落在阴影部分的概率为:.故答案为:.【点睛】本题主要考查了几何概率问题,用到的知识点为:概率=相应面积与总面积之比.17、-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.18、【分析】根据位似变换的性质计算即可.【详解】∵以原点O为位似中心,相似比为,把线段AB缩短为线段CD,B(6,3),∴点D的坐标为:,即,故答案为:.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.三、解答题(共66分)19、,【分析】根据因式分解法即可求解.【详解】解:+2x-3=0(x+3)(x-1)=0x+3=0或x-1=0,.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法解方程.20、气球P的高度约是32.9米.【分析】过点P作PC⊥AB于C点,由PC及∠A、∠B的正切值表示出AB,即AB=,求得PC即可.【详解】过点P作PC⊥AB于C,设PC=x米,在Rt△PAC中,∠PAB=45°,∴AC="PC"=x米,在Rt△PBC中,∠PBA=30°,∵tan∠PBA=,∴(米)又∵AB=90米,∴AB=AC+CB=米∴≈32.9(米),答:气球P的高度约是32.9米.21、(1);(2)点P的坐标为(﹣,0);(3)1【分析】(1)根据待定系数法,即可得到答案;(2)先求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,再求出AD所在直线的解析式,进而即可求解;(3)设直线AB与y轴交于E点,根据S△OAB=S△OBE﹣S△AOE,即可求解.【详解】(1)将点A(﹣1,3)代入y=得:3=,解得:k=﹣3,∴反比例函数的表达式为:y=﹣;(2)把B(b,1)代入y=x+1得:b+1=1,解得:b=﹣3,∴点B的坐标为(﹣3,1),作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图,∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为:y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n,得,解得,∴直线AD的函数表达式为:y=2x+5,当y=0时,2x+5=0,解得:x=﹣,∴点P的坐标为(﹣,0);(3)设直线AB与y轴交于E点,如图,令x=0,则y=0+1=1,则点E的坐标为(0,1),∴S△OAB=S△OBE﹣S△AOE=×1×3﹣×1×1=1.【点睛】本题主要考查反比例函数的图象和性质与一次函数的综合,掌握“马饮水”模型和割补法求面积,是解题的关键.22、x1=2x2=2.【分析】应用因式分解法解答即可.【详解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【点睛】本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.23、(1)证明见解析;(2)CD=3【解析】分析:(1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD=AB=3点睛:本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24、1或7【分析】先根据勾股定理求出OF=4,OE=3,再分AB、CD在点O的同侧时,AB、CD在点O的两侧时两种情况分别计算求出EF即可.【详解】如图,过点O作OE⊥CD于E,交AB于点F,∵,∴OE⊥AB,在Rt△AOF中,OA=5,AF=AB=3,∴OF=4,在Rt△COE中,OC=5,CE=CD=4,∴OE=3,当AB、CD在点O的同侧时,、间的距离EF=OF-OE=4-3=1;当AB、CD在点O的两侧时,AB、CD间的距离EF=OE+OF=3+4=7,故答案为:1或7.【点睛】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大数据分析服务劳务合同3篇
- 2024年公园瓷砖采购与铺设合同
- 2024年养猪场及配套设施租赁协议3篇
- 资产证券化基金合同三篇
- 2024年拆除工程代理合作合同版B版
- 2024年度船舶租赁安全环保条款明确协议版B版
- 2024年度地坪漆市场推广服务合同
- 2024年度网络安全风险评估与应急处置合同3篇
- 二零二四年度股权激励与期权协议3篇
- 2024年专业工程项目经理服务合同3篇
- 2022年东南亚数字经济报告
- 三大战役之淮海战役
- 动物实验福利伦理审查同意书
- 学科分类目录
- 招投标标书密封条
- 气相色谱检测器FID-培训讲解课件
- 列宁经典论著-《国家与革命》课件
- 四年级上册美术教案-18 适合纹样|苏少版
- 农业统计课件
- 26个英文字母手写体示范
- 阿利的红斗篷 完整版课件PPT
评论
0/150
提交评论