版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一早
1.题
wc=lE-8;
i=l;
a(l,l)=5A(l/2);
a(l,2)=5A(l/4);
whileabs(a(l,i+l)-a(l,i))>wc
i=i+l;
a(1,i)=sqrt(a(1,i-1));
a(1,i+1)=sqrt(a(1,i));
fprintf('a(1,%d)=%12.10f\n',i,a(1,i));
end
fprintf。一共要计算%d次计算
结果
a(1,2)=1.4953487812
a(1,3)=1.2228445450
a(1,4)=1.1058230170
a(1,5)=1.0515811985
a(1,6)=1.0254663322
a(1,7)=1.0126531154
a(1,8)=1.0063066707
a(1,9)=1.0031483792
a(1,10)=1.0015729525
a(1,11)=1.0007861672
a(1,12)=1.0003930064
a(1,13)=1.0001964839
a(1,14)=1.0000982371
a(1,15)=1.0000491174
a(1,16)=1.0000245584
a(1,17)=1.0000122791
a(1,18)=1.0000061395
a(1,19)=1.0000030698
a(1,20)=1.0000015349
a(1,21)=1.0000007674
a(1,22)=1.0000003837
a(1,23)=1.0000001919
a(1,24)=1.0000000959
a(1,25)=1.0000000480
a(1,26)=1.0000000240
a(1,27)=1.0000000120
一共要进行27次计算
4题
Maltab代码:
当把区间[-10,10]分为100等份时
»x=-10:20/100:10;
»y=x;
»[x,y]=meshgrid(x,y);
»z=exp(-abs(x))+cos(x+y)+l./(xA2+yA2+l);
»mesh(z)
>>title('区间分成100等分的三维图像,);
»xlabel('x');
»ylabel('y');
»zlabel('z');
当把区间[-10,10]分为200等份时,
»x=-10:20/200:10;
»y=x;
»[x,y]=meshgrid(x,y);
»z=exp(-abs(x))+cos(x+y)+l./(xA2+yA2+l);
»mesh(z)
>>title('区间分成200等分的三维图像,);
»xlabel('x');
»ylabel('y');
»zlabel('z');
当把区间[-10,10]分为400等份时,编程如下,
»x=-10:20/400:10;
»y=x;
»[x,y]=meshgrid(x,y);
»z=exp(-abs(x))+cos(x+y)+l./(xA2+yA2+l);
»mesh(z)
>>title('区间分成400等分的三维图像,);
»xlabel('x');
»ylabel('y');
»zlabel('z')
第一早
1.题
a=-2*ones(1,8);
a(l,D=O;
b=5*ones(1,8);
b(l,1)=2;
c=-2*ones(1,7);
disp。请输入电压值V,)
V=input('V=')
disp。请输入电阻值R')
R=input('R=')
d=zeros(1,8);
d(l,1)=(V/R);
fori=2:8
a(l,i)=a(l,i)/b(l,i-l);
b(l,i)=b(l,i)-c(l,i-l)*a(l,i);
d(l,i)=d(l,i)-a(l,i)*d(l,i-l);
end
d(l,8)=d(l,8)/b(l,8);
fori=7:-1:1
d(l,i)=(d(l,i)-c(l,i)*d(l,i+l))/b(l,i);
end
disp(1电流值如下:1);
fori=l:8
disp([111int2str(i)1=1num2str(d(i))]);
㊀nd
fprintf(1\n1);
结果:
请输入电压值V
V=10
V=
10
请输入电阻值R
R=10
R
10
电流值如下:
II=0.99995
12=0.49995
13=0.24993
工4=0.12487
15=0.062254
16=0.030761
17=0.014648
18=0.0058592
3.题
改进的平方根法
formatrational
%A=[335;359;5917]
A=[4-2-4;-21710;-410
n=length(A);
L=zeros(n,n);
U=zeros(n,n);
sum=0;
forj=l:n
U(l,j)=A(l,j);
end
fori=2:n
end
forr=2:n
forj=r:n
fork=l:r-1
sum=sum+L(r,k)*U(k,j);
end
U(r,j)=A(r,j)-sum;
sum=0;
㊀nd
sum=0;
fori=r+l:n
fork=l:r-1
sum=sum+L(irk)*U(k,r);
end
L(i,r)=(A(i,r)-sum)/U(r,r);
sum=O;
end
sum=O;
end
L=L+eye(n);
U;
D=eye(n,n);
D=D.*U;
L*D*L'
结果:
A=
4-2-4
-21710
-4109
ans=
4-2-4
-21710
-4109
第二早
1题
%Jacobi迭代算法
function[x]=jacobi_zhao(A,b,x_0,e,N)
n=size(A,l);
M=eye(n)-eye(n)/diag(diag(A))*A;
g=eye(n)/diag(diag(A))*b;
out=[];
fork=l:N
x_l=M*x_0+g;
out=[out;kx_l'];
ifnorm(x_l-x_0)<e
break;
end
x_0=x_l;
end
x=x_l;
disp('kx
disp(out)
end
%G-S迭代算法
function[x]=G_S_zhao(A,b,x_0,e,N)
n=size(A,l);
L=-tril(A,-l);
U=-tril(A',-l)';
D=diag(diag(A));
out=[];
M=eye(n)/(D-L)*U;
g=eye(n)/(D-L)*b;
fork=l:N
x_l=M*x_0+g;
out=[out;kx_l'];
ifnorm(x_l-x_0)<e
break;
end
x_0=x_l;
end
x=x_l;
disp('kx,)
disp(out)
end
求解题目过程:
»A=[101234;19-12-3;2-173-5;32312-1;4-3-5-115]
A=
101234
19-12-3
2-173-5
32312-1
4-3-5-115
»b=[12;-27;14;-17;12]
b=
12
-27
14
-17
12
»xO=[O;O;O;O;O]
xO=
0
0
0
0
0
x=jacobi_zhao(A,b,xO,O.OOOO1,60);
kX
1.00001.2000-3.00002.0000-1.41670.8000
2.00001.2050-2.32962.4071-1.65000.4522
3.00001.2656-2.34902.3531-1.89370.7051
4.00001.2504-2.22332.6181-1.87110.6508
5.00001.1997-2.21532.5919-1.95900.7699
6.00001.1829-2.15342.7302-1.93120.7704
7.00001.1405-2.14212.7323-1.97190.8352
8.00001.1252-2.10652.8098-1.95830.8468
9.00001.0975-2.09542.8217-1.97880.8847
10.00001.0850-2.07382.8671-1.97350.8969
11.00001.0673-2.06452.8802-1.98430.9200
12.00001.0577-2.05092.9077-1.98280.9303
13.00001.0463-2.04372.9191-1.98870.9448
14.00001.0392-2.03502.9363-1.98860.9527
15.00001.0318-2.02972.9451-1.99200.9620
16.00001.0267-2.02412.9561-1.99240.9678
17.00001.0218-2.02032.9627-1.99440.9739
18.00001.0182-2.01652.9699-1.99490.9781
19.00001.0149-2.01382.9746-1.99610.9821
20.00001.0124-2.01132.9793-1.99660.9851
21.00001.0102-2.00942.9827-1.99730.9878
22.00001.0085-2.00772.9858-1.99770.9898
23.00001.0070-2.00642.9882-1.99810.9916
24.00001.0058-2.00532.9903-1.99840.9930
25.00001.0048-2.00442.9919-1.99870.9943
26.00001.0040-2.00362.9934-1.99890.9952
27.00001.0033-2.00302.9945-1.99910.9961
28.00001.0027-2.00252.9955-1.99930.9967
29.00001.0022-2.00212.9962-1.99940.9973
30.00001.0019-2.00172.9969-1.99950.9978
31.00001.0015-2.00142.9974-1.99960.9982
32.00001.0013-2.00122.9979-1.99970.9985
33.00001.0010-2.00102.9982-1.99970.9987
34.00001.0009-2.00082.9985-1.99980.9990
35.00001.0007-2.00072.9988-1.99980.9991
36.00001.0006-2.00052.9990-1.99980.9993
37.00001.0005-2.00042.9992-1.99990.9994
38.00001.0004-2.00042.9993-1.99990.9995
39.00001.0003-2.00032.9994-1.99990.9996
40.00001.0003-2.00032.9995-1.99990.9997
41.00001.0002-2.00022.9996-1.99990.9997
42.00001.0002-2.00022.9997-1.99990.9998
43.00001.0002-2.00012.9997-2.00000.9998
44.00001.0001-2.00012.9998-2.00000.9998
45.00001.0001-2.00012.9998-2.00000.9999
46.00001.0001-2.00012.9999-2.00000.9999
47.00001.0001-2.00012.9999-2.00000.9999
48.00001.0001-2.00012.9999-2.00000.9999
49.00001.0000-2.00002.9999-2.00000.9999
50.00001.0000-2.00002.9999-2.00001.0000
51.00001.0000-2.00002.9999-2.00001.0000
52.00001.0000-2.00003.0000-2.00001.0000
53.00001.0000-2.00003.0000-2.00001.0000
54.00001.0000-2.00003.0000-2.00001.0000
55.00001.0000-2.00003.0000-2.00001.0000
»x=G_S_zhao(A,b,xO,0.00001,60);
k
1.00001.2000-3.13331.2095-1.49680.1567
2.00001.6578-2.66491.8991-1.84870.3347
3.00001.5074-2.43412.2530-1.92320.5340
4.00001.3562-2.29502.4903-1.95130.6794
5.00001.2451-2.20162.6513-1.96720.7803
6.00001.1680-2.13792.7613-1.97760.8496
7.00001.1150-2.09442.8366-1.98470.8970
8.00001.0787-2.06462.8882-1.98950.9295
9.00001.0539-2.04422.9234-1.99280.9517
10.00001.0369-2.03032.9476-1.99510.9670
11.00001.0253-2.02072.9641-1.99660.9774
12.00001.0173-2.01422.9754-1.99770.9845
13.00001.0118-2.00972.9832-1.99840.9894
14.00001.0081-2.00672.9885-1.99890.9927
15.00001.0055-2.00462.9921-1.99930.9950
16.00001.0038-2.00312.9946-1.99950.9966
17.00001.0026-2.00212.9963-1.99970.9977
18.00001.0018-2.00152.9975-1.99980.9984
19.00001.0012-2.00102.9983-1.99980.9989
20.00001.0008-2.00072.9988-1.99990.9993
21.00001.0006-2.00052.9992-1.99990.9995
22.00001.0004-2.00032.9994-1.99990.9997
23.00001.0003-2.00022.9996-2.00000.9998
24.00001.0002-2.00022.9997-2.00000.9998
25.00001.0001-2.00012.9998-2.00000.9999
26.00001.0001-2.00012.9999-2.00000.9999
27.00001.0001-2.00002.9999-2.00000.9999
28.00001.0000-2.00002.9999-2.00001.0000
29.00001.0000-2.00003.0000-2.00001.0000
30.00001.0000-2.00003.0000-2.00001.0000
31.00001.0000-2.00003.0000-2.00001.0000
32.00001.0000-2.00003.0000-2.00001.0000
2.题
formatlong
A=[10,l,2,3,4;l,9,-l,2,-3;2,-l,7,3,-5;3,2,3,12,-l
;4,-3,-5,-l,15];
b=[12,-27,14,-17,12]';
N=200;
%A=[2,-l,0;-l,2,-l;0,-l,2];
%b=[1,0,1.8]';
w=l.4;
n=length(A);
x0=ones(n,1);
x=ones(n,0);
flag=l;
sum=0;
k=0;
whileflag==l
fori=l:n
forj=l:i
ifi-=j
sum=sum+A(i,j)*x(j,1);
else
continue;
end
㊀nd
form=j+1:n
sum=sum+A(i,m)*x0(m,1);
end
x(i,1)=(1-w)*x0(i,l)+w*(b(i,1)-sum)/A(i,i
sum=0;
㊀nd
k=k+l
x
ifk~=N
ifnorm(x-xO,inf)>wc
flag=l;
㊀Is㊀
flag=0;
end
else
fprintf(1ON'ip^xiz6piizu'IEy1);
flag=O;
end
xO=x;
㊀nd
结果:
k=
1
x=
-0.120000000000000
-4.270222222222222
1.993955555555556
-1.926165925925926
0.319874883950618
k=
2
X=
2.397383309432098
-1.806139972249109
2.157810899061290
-2.348433539283285
0.379099041230848
k=
3
x=
1.143765844014580
-2.412267015519451
2.785075064466581
-1.811963710490288
0.996504787835416
k=
4
x=
0.983372103734337
-1.926070677869254
2.991090011275371
-2.083934205973658
1.016314189039255
k=
5
X=
1.024912270897810
-2.001106816938999
3.060052436366378
-1.994002385812657
1.012448082134657
k=
6
x=
0.963885439875658
-1.980654782076844
3.003143406710068
-1.993920749912968
1.015954517083863
k=
x=
0.999369525058159
-2.001596919855795
3.010982410353194
-2.003820902469318
0.998174940186140
k=
8
x=
1.000027496390528
-1.997320103697281
2.996599498230785
-1.998129319911984
1.000057825553756
k=
9
x=
0.999747888509718
-2.002116712222330
2.999973120360280
-2.000149979306557
0.999451770078803
k=
10
x=
1.000774710670985
-1.999487187338363
2.999345187782558
-2.000165589181306
0.999752620171508
k=
11
x=
1.000009749539964
-2.000372428623808
3.000035513026520
-1.999891567193516
1.000017725229458
k=
12
x=
0.999982828636702
-1.999868296078108
2.999971669664657
-2.000056110499740
1.000017739845509
k=
13
X=
1.000009994586556
-2.000032908028784
3.000052158839111
-1.999989561310395
1.000005273570704
k=
14
x=
0.999978667365228
-1.999976191374097
2.999991441600386
-1.999998653709936
1.000008652904539
k=
15
x=
1.000002185129806
-2.000007575489729
3.000008879340478
-2.000001633960826
0.999997593108479
k=
16
X=
0.999999734424105
-1.999996162134237
2.999995895552294
-1.999998993213431
1.000000315065173
k=
17
x=
1.000000118887653
-2.000002358301658
3.000000833556922
-2.000000149042239
0.999999544347364
k=
18
x=
1.000000366974449
-1.999999150369042
2.999999323486351
-2.000000083451083
0.999999959658791
k=
19
x=
0.999999981326240
-2.000000435046371
3.000000200795130
-1.999999933557701
1.000000001200712
k=
20
x=
0.999999983575195
-1.999999812302289
2.999999925126745
-2.000000038278648
1.000000019693475
k=
21
x=
1.000000006305440
-2.000000066607681
3.000000056766253
-1.999999988924269
0.999999998643082
k=
22
x=
0.999999987016416
-1.999999966585965
2.999999981167382
-2.000000001249537
1.000000005840724
k=
23
x=
1.000000003042602
-2.000000013654010
3.000000010175650
-2.000000000259220
0.999999997429126
k=
24
X=
0.999999999393900
-1.999999993980330
2.999999994960771
-1.999999999624972
1.000000000623497
k=
25
x=
1.000000000304000
-2.000000003064747
3.000000001679621
-2.000000000056430
0.999999999557535
k=
26
x=
1.000000000108651
-1.999999998718656
2.999999999132353
-2.000000000062381
1.000000000084475
k=
27
X=
0.999999999998986
-2.000000000588518
3.000000000351665
-1.999999999950599
0.999999999970524
k=
28
x=
0.999999999980090
-1.999999999735918
2.999999999860998
-2.000000000029200
1.000000000025574
k=
29
x=
1.000000000007856
-2.000000000107458
3.000000000074061
-1.999999999988933
0.999999999992344
k=
30
x=
0.999999999990804
-1.999999999951082
2.999999999969541
-2.000000000002855
1.000000000005712
k=
31
x=
1.000000000003359
-2.000000000021274
3.000000000014010
-1.999999999999307
0.999999999997107
第四章
1.塞法
cl㊀ar;
A=[19066-8430;6630342-36;336-168147-112;30
-3628291];
x0=[0001]1;
tol=10A(-6);
nmax=100;
k=l;u=0;lm=0;
whil㊀k<=nmax
xr=norm(xO,inf);
a=xr;
y=x0/a;
x=A*y;
lm=xr;
ifabs(Im-u)<tol;
break;
㊀nd
k=k+l;
u=lm;
x0=x;
end
Im,ul=xO
运行结果:
Im=
343.0000
ul=
-114.3333
-343.0000
0.0000
171.5002
结果分析:
按模最大特征向量为
-114.3333-343.00000.0000171.5002
按模最大特征值为
343.0000
2.题反塞法
formatlong
%A=[19066-8430;
%6630342-36;
%336-168147-112;
%30-3628291];
A=[2-10;02-1;0-12];
ep=lE-8;
N=200;
k=0;
lamda0=0;
x0=[001]';
flag=l;
a=max(abs(xO(:,1)));
whileflag==l
k=k+l
y=xO./a;
x=A*y
a=max(abs(x(:,1)));
lamda=a;
ifk<N
ifabs(lamda-lamdaO)>ep
flag=l;
else
flag=O;
end
else
flag=O;
fprintf('ON'fx6pii"uzIEy');
end
lamdaO=lamda;
xO=x;
end
结果:
k=
1
x=
0
-1
2
k=
2
x=
0.500000000000000
-2.000000000000000
2.500000000000000
k=
3
x=
1.200000000000000
-2.600000000000000
2.800000000000000
k=
4
x=
1.785714285714286
-2.857142857142858
2.928571428571429
k=
5
x=
2.195121951219512
-2.951219512195122
2.975609756097561
k=
6
x=
2.467213114754098
-2.983606557377049
2.991803278688525
k=
7
x=
2.646575342465753
-2.994520547945205
2.997260273972603
k=
8
x=
2.765082266910421
-2.998171846435100
2.999085923217550
k=
9
x=
2.843645230112770
-2.999390429747028
2.999695214873514
k=
10
x=
2.895854501117659
-2.99979678927
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规综合检测试卷B卷含答案
- 2024年垃圾焚烧发电设备项目资金申请报告代可行性研究报告
- 四年级数学(简便运算)计算题专项练习与答案
- 2024年期货船租赁协议条款汇编
- 2024年医生招聘协议样本下载
- 学习先进教师心得体会
- 2024年车辆信用担保服务正式协议
- 2024专项水稳层铺设项目协议样本
- 2024采购部常用商品买卖协议模板
- 2024年商铺租赁协议模板范例
- 华尔街之狼:掌握直线销售的艺术
- 2024年江苏国信集团有限公司招聘笔试参考题库含答案解析
- 《建设美丽中国》课件
- 2024年全国高考体育单招考试语文试卷试题(含答案详解)
- 多叶片微风风力发电项目融资计划书
- 普通诊所污水、污物、粪便处理方案 及周边环境情况说明
- 新媒体视听节目制作 课件全套 第1-10章 新媒体时代导演的基本素养-节目的合成
- 儿科遗尿中医诊疗规范诊疗指南2023版
- 过期、破损、不合格药品报损销毁表
- 录用体检操作手册(试行)
- 基层反映大学生实习乱象频发亟待关注
评论
0/150
提交评论