2022年山东省菏泽市曹县数学九上期末教学质量检测模拟试题含解析_第1页
2022年山东省菏泽市曹县数学九上期末教学质量检测模拟试题含解析_第2页
2022年山东省菏泽市曹县数学九上期末教学质量检测模拟试题含解析_第3页
2022年山东省菏泽市曹县数学九上期末教学质量检测模拟试题含解析_第4页
2022年山东省菏泽市曹县数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4 B.1:5 C.2: D.1:2.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另-个转出蓝色即可配成紫色,则可配成紫色的概率是()转盘一转盘二A. B. C. D.3.已知一元二次方程的较小根为x1,则下面对x1的估计正确的是A. B. C. D.4.方程的解是()A.0 B.3 C.0或–3 D.0或35.如图,正方形中,点是以为直径的半圆与对角线的交点.现随机向正方形内投掷一枚小针,则针尖落在阴影区域的概率为()A. B. C. D.6.下列四个手机应用图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.一元二次方程的一次项系数和常数项依次是()A.-1和1 B.1和1 C.2和1 D.0和18.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)9.关于的一元二次方程,则的条件是()A. B. C. D.10.如图,△ABC中,D为AC中点,AF∥DE,S△ABF:S梯形AFED=1:3,则S△ABF:S△CDE=()A.1:2 B.2:3 C.3:4 D.1:111.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是()A. B. C. D.12.抛物线y=2x2,y=﹣2x2,y=2x2+1共有的性质是()A.开口向上 B.对称轴都是y轴C.都有最高点 D.顶点都是原点二、填空题(每题4分,共24分)13.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.14.将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.15.当﹣1≤x≤3时,二次函数y=﹣(x﹣m)2+m2﹣1可取到的最大值为3,则m=_____.16.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为_____尺.17.如图,在平面直角坐标系中,已知▱OABC的顶点坐标分别是O(0,0),A(3,0),B(4,2),C(1,2),以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF,则点E的坐标是_____.18.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.三、解答题(共78分)19.(8分)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.20.(8分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):(1)填空:线段AB的长度d=;弯折后A、B两点的距离x的取值范围是;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”);若面积S=1.5时,点C将线段AB分成两段的长分别是;(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h=,该函数图象与⊙O的位置关系是.(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.21.(8分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x

30

32

34

36

y

40

36

32

28

(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?22.(10分)在如图所示的网格图中,已知和点(1)在网格图中点M为位似中心,画出,使其与的位似比为1:1.(1)写出的各顶点的坐标.23.(10分)已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B两点,与y轴交于点C,求出△ABC的面积.24.(10分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.25.(12分)如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为.(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点.①当时,求线段的长;②若,结合函数的图象,直接写出的取值范围.26.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:速度v(千米/小时)流量q(辆/小时)(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_____________________.(只填上正确答案的序号)①;②;③(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知,,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵?

参考答案一、选择题(每题4分,共48分)1、C【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故选:C.【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.2、B【分析】将转盘一平均分成3份,即将转盘一标“蓝”的部分平均分成两部分,分别记为蓝、蓝,再利用列表法列出所有等可能事件,根据题意求概率即可.【详解】解:将转盘一标“蓝”的部分平均分成两部分,分别记为蓝、蓝,即转盘-平均分成三等份,列表如下:红红蓝黄红(红,红)(红,红)(红,蓝)(红,黄)蓝(蓝,红)(蓝,红)(蓝,蓝)(蓝,黄)蓝(蓝,红)(蓝,红)(蓝,蓝)(蓝,黄)由表格可知,共有12种等可能的结果,其中能配成紫色的结果有5种,所以可配成紫色的概率是.故选B.【点睛】本题考查了概率,用列表法求概率时,必须是等可能事件,这是本题的易错点,熟练掌握列表法是解题的关键.3、A【解析】试题分析:解得,∴较小根为.∵,∴.故选A.4、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2=3故选D【点睛】掌握因式分解法解一元二次方程.5、B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,

∵AB为直径,

∴∠AEB=90°,

而AC为正方形的对角线,

∴AE=BE=CE,

∴弓形AE的面积=弓形BE的面积,

∴阴影部分的面积=△BCE的面积,

∴镖落在阴影部分的概率=.

故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.6、A【解析】A既是轴对称图形,又是中心对称图形;B是轴对称图形,不是中心对称图形;C既不是轴对称图形,也不是中心对称图形;D既不是轴对称图形,也不是中心对称图形;【详解】请在此输入详解!7、A【分析】找出2x2-x+1的一次项-x、和常数项+1,再确定一次项的系数即可.【详解】2x2-x+1的一次项是-x,系数是-1,常数项是1.故选A.【点睛】本题考查一元二次方程的一般形式.8、C【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点在x轴上,O=2,所以,(﹣2,0),②若逆时针旋转,则点到x轴的距离为10,到y轴的距离为2,所以,(2,10),综上所述,点的坐标为(2,10)或(﹣2,0).故选:C.【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.9、C【解析】根据一元二次方程的定义即可得.【详解】由一元二次方程的定义得解得故选:C.【点睛】本题考查了一元二次方程的定义,熟记定义是解题关键.10、D【分析】本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.【详解】△ABC中,∵AF∥DE,∴△CDE∽△CAF,∵D为AC中点,∴CD:CA=1:2,∴S△CDE:S△CAF=(CD:CA)2=1:4,∴S△CDE:S梯形AFED=1:3,又∵S△ABF:S梯形AFED=1:3,∴S△ABF:S△CDE=1:1.故选D.【点睛】本题考查了中点的定义,相似三角形的判定与性质,根据相似三角形的性质得出S△CDE:S△CAF=1:4是解题的关键.11、D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】∵河堤横断面迎水坡AB的坡比是,∴,∴,解得:AC=,故AB===8(m),故选:D.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.12、B【详解】(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1).故选B.二、填空题(每题4分,共24分)13、611【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=,∵当n=63时,前63行共有=2016个数字,2020﹣2016=1,∴2020在第61行左起第1个数,故答案为:61,1.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.14、y=2(x-2)2+3【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,

故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.15、﹣1.5或1.【分析】根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值.【详解】∵当﹣1≤x≤3时,二次函数y=﹣(x﹣m)1+m1﹣1可取到的最大值为3,∴当m≤﹣1时,x=﹣1时,函数取得最大值,即3=﹣(﹣1﹣m)1+m1﹣1,得m=﹣1.5;当﹣1<m<3时,x=m时,函数取得最大值,即3=m1﹣1,得m1=1,m1=﹣1(舍去);当m≥3时,x=3时,函数取得最大值,即3=﹣(3﹣m)1+m1﹣1,得m=(舍去);由上可得,m的值为﹣1.5或1,故答案为:﹣1.5或1.【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质,分类讨论是解题的关键.16、3【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=2.5尺,∴,解得x=3(尺).故答案为:3.【点睛】本题考查的是同一时刻物高与影长成正比,在解题时注意单位要统一.17、(12,6)或(-12,-6)【分析】根据平行四边形的性质、位似变换的性质计算,得到答案.【详解】以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF∵点B的坐标为(4,2),且点B的对应点为点E∴点E的坐标为(4×3,2×3)或(-4×3,-2×3)即:(12,6)或(-12,-6)故答案为:(12,6)或(-12,-6).【点睛】本题考查了位似和平行四边形的知识;求解的关键是熟练掌握位似的性质,从而完成求解.18、0<m<13【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣512由y=﹣512x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣5设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=125∴A(125即OA=125在Rt△OAB中,AB=OA过点O作OD⊥AB于D,∵S△ABO=12OD•AB=1∴12OD•135m=1∵m>0,解得OD=1213由直线与圆的位置关系可知1213m<6,解得m<13故答案为0<m<132【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.三、解答题(共78分)19、(1)y=﹣x2+4x;(2)P(2,2);(3)S△MOC最大值为.【分析】(1)C1、C2:y=ax2+bx开口大小相同、方向相反,则a=-1,将点A的坐标代入C2的表达式,即可求解;

(2)点A关于C2对称轴的对称点是点O(0,0),连接OC交函数C2的对称轴与点P,此时PA+PC的值最小,即可求解;

(3)S△MOC=MH×xC=(-x2+4x-x)=-x2+x,即可求解.【详解】(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),连接OC交函数C2的对称轴与点P,此时PA+PC的值最小为:线OC的长度;设OC所在直线方程为:将点O(0,0),C(3,3)带入方程,解得k=1,所以OC所在直线方程为:点P在函数C2的对称轴上,令x=2,带入直线方程得y=2,点P坐标为(2,2)(3)由(2)知OC所在直线的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),则MH=﹣x2+4x﹣x则S△MOC=S△MOH+S△MCH=MH×xC=(﹣x2+4x﹣x)=∵△MOC的面积是一个关于x的二次函数,且开口向下其顶点就是它的最大值。其对称轴为x==,此时y=S△MOC最大值为.【点睛】本题考查了待定系数法求解析式,还考查了三角形的面积,要注意将三角形分解成两个三角形求解;还要注意求最大值可以借助于二次函数.20、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.【分析】将顶点(0,5)及点(﹣3,)代入抛物线的顶点式即可求出其解析式;(2)由抛物线的解析式先求出点M的坐标,由二次函数的图象及性质即可判断d的值,可由d的值判断出x的取值范围,分别将S=3和2.5代入抛物线解析式,即可求出点C将线段AB分成两段的长;(2)设AC=y,CB=x,可直接写出点C分AB所得两段AC与CB的函数解析式,并画出图象,证△OPM为等腰直角三角形,过点O作OH⊥PM于点H,则OH=PM=,分情况可讨论出AC与CB的函数图象(线段PM)与⊙O的位置关系;(3)设直角三角形的两直角边长分别为a,b,由勾股定理及完全平公式可以证明S是x的二次函数,并可写出x的取值范围及相应S的取值范围.【详解】解:∵抛物线y=ax2+bx+c的顶点(0,5),∴y=ax2+5,将点(﹣3,)代入,得=a×(﹣3)2+5,∴a=,∴抛物线的解析式为:y=;(2)∵S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上),在y=,当y=0时,x2=2,x2=﹣2,∴M(2,0),即当x=2时,S=0,∴d的值为2;∴弯折后A、B两点的距离x的取值范围是0<x<2;当S=3时,设AC=a,则BC=2﹣a,∴a(2﹣a)=3,整理,得a2﹣2a+6=0,∵△=b2﹣4ac=﹣4<0,∴方程无实数根;当S=2.5时,设AC=a,则BC=2﹣a,∴a(2﹣a)=2.5,整理,得a2﹣2a+3=0,解得,∴当a=时,2﹣a=,当a=时,2﹣a=,∴若面积S=2.5时,点C将线段AB分成两段的长分别是和;故答案为:2,0<x<2,不能,和;(2)设AC=y,CB=x,则y=﹣x+2,如图2所示的线段PM,则P(0,2),M(2,0),∴△OPM为等腰直角三角形,∴PM=OP=2,过点O作OH⊥PM于点H,则OH=PM=,∴当0<x<时,AC与CB的函数图象(线段PM)与⊙O相离;当x=时,AC与CB的函数图象(线段PM)与⊙O相切;当<x<2时,AC与CB的函数图象(线段PM)与⊙O相交;故答案为:,相离或相切或相交;(3)设直角三角形的两直角边长分别为a,b,则,∵(a+b)2=a2+b2+2ab,∴(x﹣c)2=c2+2ab,∴,即S=,∴x的取值范围为:x>c,则相应S的取值范围为S>.【点睛】本题考查了待定系数法求解析式,二次函数的图象及性质,直线与圆的位置关系等,解题关键是熟练掌握二二次函数的图象及性质并能灵活运用.21、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元时利润最大.【解析】试题分析:(1)设一次函数解析式,将表格中任意两组x,y值代入解出k,b,即可求出该解析式;(2)利润等于单件利润乘以销售量,而单件利润又等于每件商品的销售价减去进价,从而建立每件商品的销售价与利润的一元二次方程求解;(3)将w替换上题中的150元,建立w与x的二次函数,化成一般式,看二次项系数,讨论x取值,从而确定每件商品销售价定为多少元时利润最大.试题解析:(1)设该函数的表达式为y=kx+b(k≠0),根据题意,得,解得,∴该函数的表达式为y=-2x+100;(2)根据题意得:(-2x+100)(x-30)="150",解这个方程得,x1=35,x2=45∴每件商品的销售价定为35元或45元时日利润为150元.(3)根据题意得:w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2<0,则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.考点:一次函数与二次函数的实际应用.22、(1)图见解析;(1).【分析】(1)先根据位似图形的性质和位似比得出点的位置,再顺次连接点即可得;(1)先根据点的位置得出它们的坐标,再根据点分别为的中点即可得出答案.【详解】(1)先连接,再根据位似图形的性质和位似比可得点分别为的中点,再顺次连接点即可得到,如图所示:(1),且点分别为的中点,,即.【点睛】本题考查了位似图形的性质和位似比、画位似图形,掌握理解位似图形的性质和位似比是解题关键.23、1.【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=×AB×OC=×4×6=1.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.24、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为【分析】(1)由题意利用待定系数法,即可求出抛物线的解析式;(1)①由题意分别用含m的代数式表示出点P,E的纵坐标,再用含m的代数式表示出PE的长,运用函数的思想即可求出其最大值;②根据题意对以P、Q、C、D为顶点的四边形是平行四边形分三种情况进行讨论与分析求解.【详解】解:(1)将A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1∴抛物线的解析式为y=﹣x1+x+1.(1)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(1,0),∴0<m<1.∵点P的横坐标为m,∴点P的坐标为(m,﹣m1+m+1),点E的坐标为(m,m+3),∴PE=﹣m1+m+1﹣(m+3)=﹣m1+m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论