2025届甘肃省定西市渭源县九上数学期末质量检测模拟试题含解析_第1页
2025届甘肃省定西市渭源县九上数学期末质量检测模拟试题含解析_第2页
2025届甘肃省定西市渭源县九上数学期末质量检测模拟试题含解析_第3页
2025届甘肃省定西市渭源县九上数学期末质量检测模拟试题含解析_第4页
2025届甘肃省定西市渭源县九上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省定西市渭源县九上数学期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知a、b、c、d是比例线段.a=2、b=3、d=1.那么c等于()A.9 B.4 C.1 D.122.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tanA=()A. B. C. D.3.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形4.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A. B. C. D.5.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为()A.m B.m C.m D.m6.如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程()A. B.C. D.7.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8 B.9 C.8或9 D.128.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是()A.14 B.-14 C.4 D.9.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或510.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球(

)A.32个 B.36个 C.40个 D.42个11.已知反比例函数的图象经过点(2,-2),则k的值为A.4 B. C.-4 D.-212.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)二、填空题(每题4分,共24分)13.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.14.已知是方程的一个根,则代数式的值为__________.15.若正多边形的每一个内角为,则这个正多边形的边数是__________.16.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_______个.17.一元二次方程的两实数根分别为,计算的值为__________.18.点P(﹣6,3)关于x轴对称的点的坐标为______.三、解答题(共78分)19.(8分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.20.(8分)(1)解方程:x2+4x-1=0(2)已知α为锐角,若,求的度数.21.(8分)如图,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A城市150km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,120km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.732)22.(10分)某商场秋季计划购进一批进价为每件40元的T恤进行销售.(1)根据销售经验,应季销售时,若每件T恤的售价为60元,可售出400件;若每件T恤的售价每提高1元,销售量相应减少10件.①假设每件T恤的售价提高x元,那么销售每件T恤所获得的利润是____________元,销售量是_____________________件(用含x的代数式表示);②设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每件T恤的售价.(2)根据销售经验,过季处理时,若每件T恤的售价定为30元亏本销售,可售出50件;若每件T恤的售价每降低1元,销售量相应增加5条,①若剩余100件T恤需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每件T恤的售价应是多少元?②若过季需要处理的T恤共m件,且100≤m≤300,过季亏损金额最小是__________________________元(用含m的代数式表示).(注:抛物线顶点是)23.(10分)在平面直角坐标系中,已知抛物线.(1)求抛物线的对称轴;(2)当时,设抛物线与轴交于两点(点在点左侧),顶点为,若为等边三角形,求的值;(3)过(其中)且垂直轴的直线与抛物线交于两点.若对于满足条件的任意值,线段的长都不小于1,结合函数图象,直接写出的取值范围.24.(10分)如图,△OAB中,OA=OB=10cm,∠AOB=80°,以点O为圆心,半径为6cm的优弧分别交OA、OB于点M、N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与圆弧相切,求AT的长.(3)Q为优弧上一点,当△AOQ面积最大时,请直接写出∠BOQ的度数为.25.(12分)在学习概率的课堂上,老师提出的问题:只有一张电影票,小丽和小芳想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小丽和小芳都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小丽先抽一张,小芳从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小丽看电影,否则小芳看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲同学的方案修改为只用2、3、5、7四张牌,抽取方式及规则不变,乙的方案公平吗?并说明理由.26.如图,已知直线与两坐标轴分别交于A、B两点,抛物线经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点,抛物线与x轴另一个交点为D.(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P的坐标,若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据比例线段的定义得到a:b=c:d,即2:3=c:1,然后利用比例性质求解即可.【详解】∵a、b、c、d是比例线段,∴a:b=c:d,即2:3=c:1,∴3c=12,解得:c=2.故选:B.【点睛】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.2、B【分析】根据正切的定义计算,得到答案.【详解】在Rt△ABC中,∠C=90°,,故选:B.【点睛】本题考查正切的计算,熟知直角三角形中正切的表示是解题的关键.3、A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.4、B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.5、A【解析】设PA=PB=PB′=x,在RT△PCB′中,根据sinα=,列出方程即可解决问题.【详解】设PA=PB=PB′=x,在RT△PCB′中,sinα=,∴=sinα,∴x-1=xsinα,∴(1-sinα)x=1,∴x=.故选A.【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.6、B【分析】设,则,根据矩形面积公式列出方程.【详解】解:设,则,由题意,得.故选.【点睛】考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、B【分析】根据一元二次方程的解法以及等腰三角形的性质即可求出答案.【详解】解:①当等腰三角形的底边为2时,此时关于x的一元二次方程x2−6x+k=0的有两个相等实数根,∴△=36−4k=0,∴k=9,此时两腰长为3,∵2+3>3,∴k=9满足题意,②当等腰三角形的腰长为2时,此时x=2是方程x2−6x+k=0的其中一根,代入得4−12+k=0,∴k=8,∴x2−6x+8=0求出另外一根为:x=4,∵2+2=4,∴不能组成三角形,综上所述,k=9,故选B.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及等腰三角形的性质.8、A【解析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故选A.9、D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.10、A【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】设盒子里有白球x个,

根据得:解得:x=1.

经检验得x=1是方程的解.

答:盒中大约有白球1个.

故选;A.【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11、C【解析】∵反比例函数的图象经过点(2,-2),∴.故选C.12、B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.二、填空题(每题4分,共24分)13、【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.【详解】连接BD,过点B作BN⊥AD于点N,∵将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=1,BN=,S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案为.【点睛】考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.14、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【点睛】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.15、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.16、1【解析】设取走的红球有x个,根据概率公式可得方程,解之可得答案.【详解】设取走的红球有x个,根据题意,得:,解得:x=1,即取走的红球有1个,故答案为:1.【点睛】此题主要考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.17、-10【分析】首先根据一元二次方程根与系数的关系求出和,然后代入代数式即可得解.【详解】由已知,得∴∴故答案为-10.【点睛】此题主要考查根据一元二次方程根与系数的关系求代数式的值,熟练掌握,即可解题.18、(﹣6,﹣3).【分析】根据“在平面直角坐标系中,关于轴对称的两点的坐标横坐标相同、纵坐标互为相反数”,即可得解.【详解】关于轴对称的点的坐标为故答案为:【点睛】本题比较容易,考查平面直角坐标系中关于x轴对称的两点的坐标之间的关系,是需要识记的内容.三、解答题(共78分)19、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函数的性质找出抛物线的顶点坐标,将x=h代入一次函数解析式中可得出点(h,2)在直线1上,进而可证出直线l恒过抛物线C1的顶点;(2)由a>0可得出当x=h=1时y1=a(x﹣h)2+2取得最小值2,结合当t≤x≤t+3时二次函数y1=a(x﹣h)2+2的最小值为2,可得出关于t的一元一次不等式组,解之即可得出结论;(3)令y1=y2可得出关于x的一元二次方程,解之可求出点P,Q的横坐标,由线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,可得出>1或<﹣1,再结合1≤k≤3,即可求出a的取值范围.【详解】(1)∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2),当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点;(2)∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2,又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣2≤t≤1;(3)令y1=y2,则a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵1≤k≤3,∴﹣1<a<0或0<a<1.【点睛】本题考查了二次函数的性质、一次函数图象上点的坐标特征、二次函数的最值、解一元二次方程以及解不等式,解题的关键是:(1)利用二次函数的性质及一次函数图象上点的坐标特征,证出直线l恒过抛物线C的顶点;(2)利用二次函数的性质结合二次函数的最值,找出关于t的一元一次不等式组;(3)令y1=y2,求出点P,Q的横坐标.20、(1),;(2)75°.【分析】(1)用公式法即可求解;(2)根据特殊角的三角函数求解即可.【详解】(1)∵,∴,∴,,(2)∵,∴,∴.【点睛】本题考查了利用公式法解一元二次方程和利用特殊角的三角函数值求角的度值,熟记特殊角的三角函数值是解题的关键.21、计划修建的这条高速铁路穿越保护区,理由见解析【分析】作PH⊥AC于H,根据等腰三角形的判定定理得到PB=AB=150,根据正弦的定义求出PH,比较大小得到答案.【详解】计划修建的这条高速铁路穿越保护区,理由如下:作PH⊥AC于H,由题意得,∠PBH=60°,∠PAH=30°,∴∠APB=30°,∴∠BAP=∠BPA,∴PB=AB=150,在Rt△PBH中,sin∠PBH=,∴PH=PB•sin∠PBH=75≈129.9,129.9>120,∴计划修建的这条高速铁路穿越保护区.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.22、(1)①20+x,400-10x;②y=﹣10x+200x+8000,60元或80元;(2)①20元,②元.【分析】(1)①每件T恤获得的利润=实际售价-进价,销售量=售价为60元时销售量-因价格上涨减少的销售量;

②根据:销售利润=单件利润×销售量可列函数解析式,并求y=8000时x的值;

(2)①根据:亏损金额=总成本-每件T恤的售价×销售量,列出函数关系式,配方后可得最值情况;

②根据与(2)①相同的相等关系列函数关系式配方可得最小值.【详解】解:(1)①每件T恤所获利润20+x元,这种T恤销售量400-10x个;②设应季销售利润为y元,由题意得:y=(20+x)(400-10x)=﹣10x+200x+8000把y=8000代入,得﹣10x+200x+8000=8000,解得x1=0,x2=20,∴应季销售利润为8000元时,T恤的售价为60元或80元.(2)①设过季处理时亏损金额为y2元,单价降低z元.由题意得:y2=40×100-(30-z)(50+5z)=5(z-10)2+2000z=10时亏损金额最小为2000元,此时售价为20元②∵y2=40m-(30-z)(50+5z)=5(z-10)2+40m-2000,∴过季亏损金额最小40m-2000元.【点睛】本题主要考查二次函数的应用,解决本题的关键是在不同情形下理清数量关系、紧扣相等关系列出函数解析式,根据解析式结合自变量取值范围求函数最值是基本技能.23、(1)x=2;(2);(3)或.【解析】(1)利用配方法将二次函数解析式变形为顶点式,由此即可得出抛物线的对称轴;(2)利用二次函数图象上点的坐标特征可得出点A,B的坐标,由(1)可得出顶点C的坐标,再利用等边三角形的性质可得出关于a的一元一次方程,解之即可得出a值;(3)分及两种情况考虑:①当时,利用二次函数图象上点的坐标特征可得出关于a的一元一次不等式,解之即可得出a的取值范围;②当时,利用二次函数图象上点的坐标特征可得出关于a的一元一次不等式,解之即可得出a的取值范围.综上,此题得解.【详解】(1)∵,∴抛物线的对称轴为直线.(2)依照题意,画出图形,如图1所示.当时,,即,解得:,.由(1)可知,顶点的坐标为.∵,∴.∵为等边三角形,∴点的坐标为,∴,∴.(3)分两种情况考虑,如图2所示:①当时,,解得:;②当时,,解得:.【点睛】本题考查了二次函数的三种形式、二次函数图象上点的坐标特征、等边三角形的性质以及解一元一次不等式.24、(1)证明见解析;(2)AT=8;(3)170°或者10°.【分析】(1)欲证明AP=BP′,只要证明△AOP≌△BOP′即可;

(2)在Rt△ATO中,利用勾股定理计算即可;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.【详解】解:(1)证明:∵∠AOB=∠POP′=80°∴∠AOB+∠BOP=∠POP′+∠BOP即∠AOP=∠BOP′在△AOP与△BOP′中,∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)∵AT与弧相切,连结OT,∴OT⊥AT在Rt△AOT中,根据勾股定理,AT=∵OA=10,OT=6,∴AT=8;(3)解:如图,当OQ⊥OA时,△AOQ的面积最大;

理由是:当Q点在优弧MN左侧上,∵OQ⊥OA,

∴QO是△AOQ中最长的高,则△AOQ的面积最大,

∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,

当Q点在优弧MN右侧上,

∵OQ⊥OA,

∴QO是△AOQ中最长的高,则△AOQ的面积最大,

∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,

综上所述:当∠BOQ的度数为10°或170°时,△AOQ的面积最大.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是正确寻找全等三角形,根据数形结合进行分类讨论.25、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论