2022年江苏省华士中学数学九年级第一学期期末学业水平测试试题含解析_第1页
2022年江苏省华士中学数学九年级第一学期期末学业水平测试试题含解析_第2页
2022年江苏省华士中学数学九年级第一学期期末学业水平测试试题含解析_第3页
2022年江苏省华士中学数学九年级第一学期期末学业水平测试试题含解析_第4页
2022年江苏省华士中学数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.点M(2,-3)关于原点对称的点N的坐标是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)2.如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA1=1:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A.1:2 B.1:3 C.1:4 D.1:93.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数().A.50° B.60° C.100° D.120°4.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.85.设,,是抛物线(,为常数,且)上的三点,则,,的大小关系为()A. B. C. D.6.某制药厂,为了惠顾于民,对一种药品由原来的每盒121元,经连续两次下调价格后,每盒降为81元;问平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题可列的方程为()A.x= B.x=C. D.7.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)8.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A. B. C. D.9.如图,在矩形中,,垂足为,设,且,则的长为()A.3 B. C. D.10.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A. B. C. D.11.如图,矩形的面积为4,反比例函数()的图象的一支经过矩形对角线的交点,则该反比例函数的解析式是()A. B. C. D.12.抛物线,下列说法正确的是()A.开口向下,顶点坐标 B.开口向上,顶点坐标C.开口向下,顶点坐标 D.开口向上,顶点坐标二、填空题(每题4分,共24分)13.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).14.某学校的初三(1)班,有男生20人,女生23人.现随机抽一名学生,则:抽到一名男生的概率是_____.15.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.16.已知两个相似三角形与的相似比为1.则与的面积之比为________.17.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.18.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x,则列出方程是______________.三、解答题(共78分)19.(8分)如图,A,B,C是⊙O上的点,AC=BC,OD=OE.求证:CD=CE.20.(8分)如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D与OA的位置关系,并证明你的结论.②通过上述证明,你还能得出哪些等量关系?21.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.22.(10分)已知关于x的一元二次方程有两个不相等的实数根,求m的取值范围.23.(10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是A(2,﹣3),B(5,﹣1),C(1,3),结合所给的平面直角坐标系,解答下列问题:(1)请在如图坐标系中画出△ABC;(2)画出△ABC关于y轴对称的△A'B'C',并写出△A'B'C'各顶点坐标。24.(10分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.25.(12分)已知矩形中,,,点、分别在边、上,将四边形沿直线翻折,点、的对称点分别记为、.(1)当时,若点恰好落在线段上,求的长;(2)设,若翻折后存在点落在线段上,则的取值范围是______.26.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.(1)求反比例函数的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.2、D【分析】由点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比为1:3,根据相似图形的面积比等于相似比的平方,即可求得答案.【详解】∵点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五边形ABCDE和五边形A1B1C1D1E1的位似比为1:3,∴五边形ABCDE和五边形A1B1C1D1E1的面积比是1:1.故选:D.【点睛】此题考查了位似图形的性质.此题比较简单,注意相似图形的周长的比等于相似比,相似图形的面积比等于相似比的平方.3、B【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【详解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故选:B.【点睛】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键.4、D【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【详解】试题解析:设圆锥的底面半径为r圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是∴弧长即圆锥底面的周长是解得,r=4,∴底面圆的直径为1.故选:D.【点睛】本题考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.5、C【分析】根据二次函数的性质得到抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=-1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=-1,

而A(-2,y1)离直线x=-1的距离最近,C(2,y1)点离直线x=-1最远,

∴y1<y2<y1.

故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.6、D【分析】设平均每次下调的百分率为x,根据该药品的原价及经过两次下调后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:设平均每次下调的百分率为x,依题意,得:121(1﹣x)2=1.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、D【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.8、A【详解】解:根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故选A.【点睛】本题考查反比例函数图象上点的坐标特征.9、C【分析】根据同角的余角相等求出∠ADE=∠ACD,再根据两直线平行,内错角相等可得∠BAC=∠ACD,然后求出AC.【详解】解:∵DE⊥AC,

∴∠ADE+∠CAD=90°,

∵∠ACD+∠CAD=90°,

∴∠ACD=∠ADE=α,

∵矩形ABCD的对边AB∥CD,

∴∠BAC=∠ACD,∵cosα=,,∴AC=.故选:C.【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键.10、D【解析】试题分析:A、由一次函数y=kx+k的图象可得:k>0,此时二次函数y=kx2﹣kx的图象应该开口向上,错误;B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误;C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误;D、正确.故选D.考点:1、二次函数的图象;2、一次函数的图象11、D【分析】过P点作PE⊥x轴于E,PF⊥y轴于F,根据矩形的性质得S矩形OEPF=S矩形OACB=1,然后根据反比例函数的比例系数k的几何意义求解.【详解】过P点作PE⊥x轴于E,PF⊥y轴于F,如图所示:

∵四边形OACB为矩形,点P为对角线的交点,

∴S矩形OEPF=S矩形OACB=×4=1.

∴k=-1,

所以反比例函数的解析式是:.故选:D【点睛】考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12、C【分析】直接根据顶点式即可得出顶点坐标,根据a的正负即可判断开口方向.【详解】∵,∴抛物线开口向下,由顶点式的表达式可知抛物线的顶点坐标为,∴抛物线开口向下,顶点坐标故选:C.【点睛】本题主要考查顶点式的抛物线的表达式,掌握a对开口方向的影响和顶点坐标的确定方法是解题的关键.二、填空题(每题4分,共24分)13、【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.14、【分析】随机抽取一名学生总共有20+23=43种情况,其中是男生的有20种情况.利用概率公式进行求解即可.【详解】解:一共有20+23=43人,即共有43种情况,∴抽到一名男生的概率是.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.15、3.【分析】先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.16、2【分析】根据相似三角形的面积比等于相似比的平方,即可求得答案.【详解】解:∵两个相似三角形的相似比为1,

∴这两个三角形的面积之比为2.

故答案为:2.【点睛】此题考查了相似三角形的性质.注意熟记定理是解此题的关键.17、π【解析】试题分析:∵,∴S阴影===.故答案为.考点:旋转的性质;扇形面积的计算.18、=31.1【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.1故答案为:=31.1.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.三、解答题(共78分)19、详见解析【分析】根据AC=BC,得出∠AOC=∠BOC,再根据SAS定理得出△COD≌△COE,由此可得出结论.【详解】解:证明:连接在△OCD和△OCE中,,∴△OCD≌△OCE(SAS)【点睛】本题考查的是圆心角、弧、弦的关系和全等三角形的判定和性质,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.20、(1)⊙D与OA的位置关系是相切,证明详见解析;(2)∠DOA=∠DOE,OE=OF.【分析】①首先过点D作DF⊥OA于F,由点D是∠AOB的平分线OC上任意一点,DE⊥OB,根据角平分线的性质,即可得DF=DE,则可得D到直线OA的距离等于⊙D的半径DE,则可证得⊙D与OA相切.

②根据切线的性质解答即可.【详解】解:①⊙D与OA的位置关系是相切,

证明:过D作DF⊥OA于F,

∵点D是∠AOB的平分线OC上任意一点,DE⊥OB,

∴DF=DE,

即D到直线OA的距离等于⊙D的半径DE,

∴⊙D与OA相切.

②∠DOA=∠DOE,OE=OF.21、(1)见解析;(2)π.【分析】(1)分别作出点、绕点按顺时针方向旋转得到的对应点,再顺次连接可得;(2)根据扇形的面积公式列式计算可得.【详解】(1)解:如图所示:△AB′C′即为所求(2)解:∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π【点睛】本题主要考查作图以及旋转变换,解题的关键是根据旋转的性质作出变换后的对应点及扇形的面积公式.22、m>﹣1且m≠1.【分析】由关于x的一元二次方程有两个不相等的实数根,由一元二次方程的定义和根的判别式的意义可得m≠1且△>1,即4﹣4m•(﹣1)>1,两个不等式的公共解即为m的取值范围.【详解】∵关于x的一元二次方程有两个不相等的实数根,∴m≠1且△>1,即4﹣4m•(﹣1)>1,解得m>﹣1,∴m的取值范围为m>﹣1且m≠1,∴当m>﹣1且m≠1时,关于x的一元二次方程mx2+2x﹣1=1有两个不相等的实数根.23、(1)图见解析;(2)图见解析;A′(-2,-3),B′(-5,-1),C′(-1,3)【分析】(1)在坐标系内描出各点,顺次连接各点即可;(2)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;【详解】(1)如图,△ABC为所求;(2)如图,△A'B'C'为所求;A′(-2,-3),B′(-5,-1),C′(-1,3)【点睛】本题考查的是作图−轴对称变换,熟知轴对称的性质是解答此题的关键.24、(1)y=-(x-6)2+2.6;(2)球能过网;球会出界.【解析】解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴y=a(x-6)2+h过(0,2)点,∴2=a(0-6)2+2.6,解得:a=-,所以y与x的关系式为:y=-(x-6)2+2.6.(2)当x=9时,y=-(x-6)2+2.6=2.45>2.43,所以球能过网;当y=0时,-(x-6)2+2.6=0,解得:x1=6+2>18,x2=6-2(舍去),所以会出界.25、(1);(2)且.【分析】(1)过作于,延长交于点,如图1,易证∽,于是设,则,可得,然后在中根据勾股定理即可求出a的值,进而可得的长,设,则可用n的代数式表示,连接FB、,如图2,根据轴对称的性质易得,再在中,根据勾股定理即可求出n的值,于是可得结果;(2)仿(1)题的思路,在中,利用勾股定理可得关于x和m的方程,然后利用一元二次方程的根的判别式和二次函数的知识即可求出m的范围,再结合点的特殊位置可得m的最大值,从而可得答案.【详解】解:(1)∵四边形ABCD是矩形,∴AB∥CD,过作于,延长交于点,如图1,则AB∥CD∥QH,∴∽,∴,设,则,∴.在中,∵,∴,解得:或(舍去).∴,∴,设,则,连接FB、,如图2,则,在中,由勾股定理,得:,∴,解得:,∴;(2)如图1,∵,∴,设,则,∴.在中,∵,∴,整理,得:,若翻折后存在点落在线段上,则上述方程有实数根,即△≥0,∴,整理,得:,由二次函数的知识可得:,或(舍去),∵,∴,当x=m时,方程即为:,解得:,∴,又∵当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论