版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江阴市长寿中学2025届九年级数学第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知菱形的周长为40cm,两对角线长度比为3:4,则对角线长分别为()A.12cm.16cm B.6cm,8cm C.3cm,4cm D.24cm,32cm2.下列二次函数中,如果函数图像的对称轴是轴,那么这个函数是()A. B. C. D.3.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.44.下列事件中是必然事件的是()A.﹣a是负数 B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上 D.平移后的图形与原来的图形对应线段相等5.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是().A. B. C. D.6.如图,将绕点旋转得到,设点的坐标为,则点的坐标为()A. B.C. D.7.若.则下列式子正确的是()A. B. C. D.8.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5709.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是()A. B.C. D.10.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:1二、填空题(每小题3分,共24分)11.如图,中,A,B两个顶点在轴的上方,点C的坐标是(−1,0).以点C为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍,记所得的像是.设点A的横坐标是,则点A对应的点的横坐标是_________.12.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).13.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.14.在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为_______千米.15.两地的实际距离是,在地图上众得这两地的距离为,则这幅地图的比例尺是___________.16.已知点,都在反比例函数图象上,则____(填“”或“”或“”).17.若是关于的一元二次方程,则__________.18.已知扇形的半径为,圆心角为,则扇形的弧长为__________.三、解答题(共66分)19.(10分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(6分)如图,在中,,的平分线交于,为上一点,,以为圆心,以的长为半径画圆.(1)求证:是⊙的切线;(2)求证:.21.(6分)如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式及其顶点Q的坐标;(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.22.(8分)如图,在A岛周围50海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续正东方向航行40海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)23.(8分)如图,在矩形中,,为边上一点,把沿直线折叠,顶点折叠到,连接与交于点,连接与交于点,若.(1)求证:;(2)当时,,求的长;(3)连接,直接写出四边形的形状:.当时,并求的值.24.(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?25.(10分)如图,在平面直角坐标系中,直线与直线,交点的横坐标为,将直线,沿轴向下平移个单位长度,得到直线,直线,与轴交于点,与直线,交于点,点的纵坐标为,直线;与轴交于点.(1)求直线的解析式;(2)求的面积26.(10分)如图,在中,,是边上的中线,平分交于点、交于点,,.(1)求的长;(2)证明:;(3)求的值.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A.考点:1、菱形的性质;2、勾股定理.2、C【分析】由已知可知对称轴为x=0,从而确定函数解析式y=ax2+bx+c中,b=0,由选项入手即可.【详解】二次函数的对称轴为y轴,
则函数对称轴为x=0,
即函数解析式y=ax2+bx+c中,b=0,
故选:C.【点睛】此题考查二次函数的性质,熟练掌握二次函数的图象及性质是解题的关键.3、D【解析】如图连接OB、OD;∵AB=CD,∴=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,故选D.4、D【解析】分析:根据必然事件指在一定条件下,一定发生的事件,可得答案.详解:A.
−a是非正数,是随机事件,故A错误;B.两个相似图形是位似图形是随机事件,故B错误;C.随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C错误;D.平移后的图形与原来对应线段相等是必然事件,故D正确;故选D.点睛:考查随机事件,解决本题的关键是正确理解随机事件,不可能事件,必然事件的概念.5、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【点睛】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.6、B【分析】由题意可知,点C为线段A的中点,故可根据中点坐标公式求解.对本题而言,旋转后的纵坐标与旋转前的纵坐标互为相反数,(旋转后的横坐标+旋转前的横坐标)÷2=-1,据此求解即可.【详解】解:∵绕点旋转得到,点的坐标为,∴旋转后点A的对应点的横坐标为:,纵坐标为-b,所以旋转后点的坐标为:.故选:B.【点睛】本题考查了旋转变换后点的坐标规律探求,属于常见题型,掌握求解的方法是解题的关键.7、A【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x-7y=0,∴2x=7y.A.,则2x=7y,故此选项正确;B.,则xy=14,故此选项错误;C.,则2y=7x,故此选项错误;D.,则7x=2y,故此选项错误.故选A.【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.8、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.9、B【分析】根据相似三角形的判定方法进行判断,要注意相似三角形的对应边和对应角.【详解】解:如图,在中,∠B的夹边为AB和BC,在中,∠B的夹边为AB和BD,∴若要,则,即故选B.【点睛】此题主要考查的是相似三角形的判定,正确地判断出相似三角形的对应边和对应角是解答此题的关键.10、B【分析】根据相似三角形面积的比等于相似比的平方即可得出.【详解】∵两个相似三角形的相似比是1:2,∴它们的面积比是1:1.故选B.【点睛】本题是一道考查相似三角形性质的基本题目,比较简单.二、填空题(每小题3分,共24分)11、【分析】△A′B′C的边长是△ABC的边长的2倍,过A点和A′点作x轴的垂线,垂足分别是D和E,因为点A的横坐标是a,则DC=-1-a.可求EC=-2-2a,则OE=CE-CO=-2-2a-1=-3-2a【详解】解:如图,过A点和A′点作x轴的垂线,垂足分别是D和E,∵点A的横坐标是a,点C的坐标是(-1,0).
∴DC=-1-a,OC=1
又∵△A′B′C的边长是△ABC的边长的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a【点睛】本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.12、0.1【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.13、(15﹣2x)(9﹣2x)=1.【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据题意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.14、1【解析】根据比例尺=图上距离:实际距离.根据比例尺关系即可直接得出实际的距离.【详解】根据比例尺=图上距离:实际距离,得:A,B两地的实际距离为2.6×1000000=100000(cm)=1(千米).故答案为1.【点睛】本题考查了线段的比.能够根据比例尺正确进行计算,注意单位的转换.15、1:1【分析】图上距离和实际距离已知,依据“比例尺=图上距离:实际距离”即可求得地图的比例尺.【详解】解:因为,所以这幅地图的比例尺是.故答案为:1:1.【点睛】本题考查比例尺.比例尺=图上距离:实际距离,在计算比例尺时一定要将实际距离与地图上的距离的单位化统一.16、【分析】先判断,则图像经过第一、三象限,根据反比例函数的性质,即可得到答案.【详解】解:∵,∴反比例函数的图象在第一、三象限,且在每个象限内y随x增大而减小,∵,∴,故答案为:.【点睛】本题考查了反比例函数的图象和性质,解题的关键是掌握时,反比例函数经过第一、三象限,且在每个象限内y随x增大而减小.17、1【分析】根据一元二次方程的定义可知的次数为2,列出方程求解即可得出答案.【详解】解:∵是关于的一元二次方程,∴,解得:m=1,故答案为:1.【点睛】本题重点考查一元二次方程定义,理解一元二次方程的三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(1)是整式方程;其中理解特点(2)是解决这题的关键.18、【分析】直接根据弧长公式即可求解.【详解】∵扇形的半径为8cm,圆心角的度数为120°,
∴扇形的弧长为:.故答案为:.【点睛】本题考查了弧长的计算.解答该题需熟记弧长的公式.三、解答题(共66分)19、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【详解】(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20、(1)证明见解析;(2)证明见解析.【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.【详解】证明:(1)过点作于;∵,以为圆心,以的长为半径画圆,∴AB为圆D的切线又∵,且AD平分∠BAC,且DF⊥AC,是⊙的切线.(2)由,DB是半径得AB的是⊙O的切线,又由(1)可知是⊙的切线∵,∴即.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.21、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作图见解析;(3)①不正确,理由见解析;②不能,理由见解析.【分析】(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中即可确定b、c的值,然后配方后即可确定其顶点坐标;(2)连接BC,交对称轴于点P,连接AP、AC.求得C点的坐标后然后确定直线BC的解析式,最后求得其与x=2与直线BC的交点坐标即为点P的坐标;(3)①设D(t,-t2+4t+1),设折线D-E-O的长度为L,求得L的最大值后与当点D与Q重合时L=9+2=11<相比较即可得到答案;②假设四边形DCEB为平行四边形,则可得到EF=DF,CF=BF.然后根据DE∥y轴求得DF,得到DF>EF,这与EF=DF相矛盾,从而否定是平行四边形.【详解】解:(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如图1,连接BC,交对称轴于点P,连接AP、AC.∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小.∵点A关于对称轴x=2的对称点是点B(1,0),抛物线y=-x2+4x+1与y轴交点C的坐标为(0,1).∴由几何知识可知,PA+PC=PB+PC为最小.设直线BC的解析式为y=kx+1,将B(1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴当x=2时,y=3,∴点P的坐标为(2,3).(3)①这个同学的说法不正确.∵设D(t,-t2+4t+1),设折线D-E-O的长度为L,则L=−t2+4t+1+t=−t2+1t+1=−(t−)2+,∵a<0,∴当t=时,L最大值=.而当点D与Q重合时,L=9+2=11<,∴该该同学的说法不正确.②四边形DCEB不能为平行四边形.如图2,若四边形DCEB为平行四边形,则EF=DF,CF=BF.∵DE∥y轴,∴,即OE=BE=2.1.当xF=2.1时,yF=-2.1+1=2.1,即EF=2.1;当xD=2.1时,yD=−(2.1−2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF>EF,这与EF=DF相矛盾,∴四边形DCEB不能为平行四边形.【点睛】本题考查二次函数及四边形的综合,难度较大.22、无触礁的危险.【分析】根据已知条件解直角三角形OAC可得A岛距离航线的最短距离AC的值,若AC>50,则无触礁危险,若AC<50,则有触礁危险.【详解】解由题意得:∠AOC=30°,∠ABC=45°,∠ACO=90°,OB=40∠BAC=45°,AC=BC在Rt△OAC中,∠ACO=90°,∠AOC=30°,tan∠AOC=,∴,∴,.因此无触礁的危险.【点睛】本题考查解直角三角形,由题意画出几何图形把实际问题转化为解直角三角形是解题关键.23、(1)见解析;(2);(3)菱形,24【分析】(1)由题意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,则可证△ABE∽△DEC;
(2)设AE=x,则DE=13-x,由相似三角形的性质可得,即:,可求x的值,即可得DE=9,根据勾股定理可求CE的长;
(3)由折叠的性质可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行线的性质可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,则四边形C'QCP是菱形,通过证△C'EQ∽△EDC,可得,即可求CE•EQ的值.【详解】证明:(1)∵CE⊥BE,
∴∠BEC=90°,
∴∠AEB+∠CED=90°,
又∵∠ECD+∠CED=90°,
∴∠AEB=∠ECD,
又∵∠A=∠D=90°,
∴△ABE∽△DEC
(2)设AE=x,则DE=13-x,
由(1)知:△ABE∽△DEC,
∴,即:
∴x2-13x+36=0,
∴x1=4,x2=9,
又∵AE<DE
∴AE=4,DE=9,
在Rt△CDE中,由勾股定理得:
(3)如图,
∵折叠,
∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,
∵CE⊥BC',∠BC'P=90°,
∴CE∥C'P,
∴∠C'PQ=∠CQP,
∴∠CQP=∠CPQ,
∴CQ=CP,
∴CQ=CP=C'Q=C'P,
∴四边形C'QCP是菱形,
故答案为:菱形
∵四边形C'QCP是菱形,
∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD
又∵∠C'EQ=∠D=90°
∴△C'EQ∽△EDC
∴
即:CE•EQ=DC•C'Q=6×4=24【点睛】本题是相似形综合题,考查了矩形的性质,菱形的判定和性质,折叠的性质,相似三角形的判定和性质,勾股定理等性质,灵活运用相关的性质定理、综合运用知识是解题的关键.24、(1)36元;(2)20元;2880元【解析】(1)每件衬衫降价x元,利用每件利润销售件数=总利润,列方程.(2)利用每件利润销售件数=总利润列关系式,得到二次函数,求最值即可.【详解】(1)解:设每件衬衫降价x元,可使每天盈利1600元,根据题意可列方程:(44-x)(20+5x)=1600,整理,得x²-40x+144=0,解得:x=36或x=4.因为尽快减少库存,取x=36.答:每件衬衫降价36元更利于销售;(2)解:设每件衬衫降价a元,可使每天盈利y元,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司产品销售合同正式版样式
- 安装工程分包协议书
- 大学学校商业赞助合同
- 解除租赁合同赔偿协议书
- 北京清华附中上地学校C21级数学基础练习三及答案
- 第15课 货币的使用与世界货币体系的形成 课件高二上学期历史统编版(2019)选择性必修1国家制度与社会治理-1
- 高三一轮复习英语试题(人教版新高考新教材)考点规范练12 LanguagesAroundtheWorld世界上的语言
- 浙江省杭州地区(含周边)重点高中2023-2024学年高一下学期4月期中考试地理
- 美国的选举制度:问题与制度分析-毛寿龙
- 4S店装修定金协议模板
- 2023公路桥梁钢结构防腐涂装技术条件
- 电子商务平台的用户体验与满意度研究
- 大学动植物检疫考试(习题卷5)
- 执业医师档案登记表
- 北师大版高三数学选修4-6初等数论初步全册课件【完整版】
- 高中英语-选修二Unit 3 Times Change教学设计学情分析教材分析课后反思
- 人教版PEP英语四年级上册Unit2-My-schoolbag-A-lets-talk课件等
- 乡村振兴的实践探索学习通课后章节答案期末考试题库2023年
- 考研信号与系统真题
- 全册(教学设计)外研版(三起)英语三年级上册
- 鲁科版高一物理必修第二册《生活中的抛体运动》教案及教学反思
评论
0/150
提交评论