版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省成都市实验中学九上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.2.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤3.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④4.下列说法错误的是()A.将数用科学记数法表示为B.的平方根为C.无限小数是无理数D.比更大,比更小5.在平面直角坐标系中,将二次函数y=3的图象向左平移2个单位,所得图象的解析式为()A.y=3−2 B.y=3+2 C.y=3 D.y=36.下列方程中是关于的一元二次方程的是()A. B. C. D.7.从一个不透明的口袋中摸出红球的概率为,已知口袋中的红球是3个,则袋中共有球的个数是()A.5 B.8 C.10 D.158.下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视,正在播放广告C.任意购买一张电影票,座位号恰好是“排号”D.一个袋中只装有个黑球,从中摸出一个球是黑球9.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC10.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.分解因式:=__________12.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是_____个.13.已知,如图,在□ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=______cm.14.若,则_______.15.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:完成引体向上的个数78910人数1234这10人完成引体向上个数的中位数是___________16.在二次根式中的取值范围是__________.17.已知二次函数的图象与轴的一个交点为,则它与轴的另一个交点的坐标是__________.18.若两个相似三角形的周长比为2:3,则它们的面积比是_________.三、解答题(共66分)19.(10分)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)20.(6分)如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.21.(6分)作出函数y=2x2的图象,并根据图象回答下列问题:(1)列表:x……y……(2)在下面给出的正方形网格中建立适当的平面直角坐标系,描出列表中的各点,并画出函数y=2x2的图象:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是(直接写出结论).22.(8分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.23.(8分)如图,在ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.24.(8分)解方程:(1)x2+3=4x(2)3x(x-3)=-425.(10分)用适当的方法解下列方程:(1)4x2-1=0;(2)3x2+x-5=0;26.(10分)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-1.其图象如图所示.⑴a=;b=;⑵销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?⑶由图象可知,销售单价x在时,该种商品每天的销售利润不低于16元?
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【详解】作AD∥x轴,作CD⊥AD于点D,如图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).考点:动点问题的函数图象2、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.3、C【解析】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△PAO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正确;∵AO:OP:PA=r:r:r=1::.∴④正确;说法正确的是③④,故选C.4、C【分析】根据科学记数法的表示方法、平方根的定义、无理数的定义及实数比较大小的方法,进行逐项判断即可.【详解】A.65800000=6.58×107,故本选项正确;B.9的平方根为:,故本选项正确;C.无限不循环小数是无理数,而无限小数包含无限循环小数和无限不循环小数,故本选项错误;D.,因为,所以,即,故本选项正确.故选:C.【点睛】本题考查科学记数法、平方根、无理数的概念及实数比较大小,明确各定义和方法即可,难度不大.5、D【分析】先确定抛物线y=3x1的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移1个单位所得对应点的坐标为(-1,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x1的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(-1,0),∴平移后的抛物线解析式为:y=3(x+1)1.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、不是整式方程,故本选项错误;B、当=0时,方程就不是一元二次方程,故本选项错误;C、由原方程,得,符合一元二次方程的要求,故本选项正确;D、方程中含有两个未知数,故本选项错误.故选C.【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.7、D【分析】根据概率公式,即可求解.【详解】3÷=15(个),答:袋中共有球的个数是15个.故选D.【点睛】本题主要考查概率公式,掌握概率公式,是解题的关键.8、D【分析】根据必然事件的概念对各选项分析判断即可.【详解】解:A、购买一张彩票,有可能中奖,也有可能不中奖,是随机事件,故A不合题意;B、打开电视,可能正在播放广告,也可能在播放其他节目,是随机事件,故B不合题意;C、购买电影票时,可能恰好是“7排8号”,也可能是其他位置,是随机事件,故C不合题意;D、从只装有5个黑球的袋子中摸出一个球,摸出的肯定是黑球,是必然事件,故D符合题意;故选D.【点睛】本题主要考查确定事件;在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫做必然发生的事件,简称必然事件.9、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.10、B【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.二、填空题(每小题3分,共24分)11、【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a).12、1【分析】根据几何体的三视图可进行求解.【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=1(个).故答案为1.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.13、3.【分析】首先根据平行四边形的性质,得出AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC,又由BF是∠ABC的角平分线,可得∠ABF=∠CBF,∠BFC=∠CBF,进而得出CF=BC,即可得出DF.【详解】,解:∵在□ABCD中,AB=4cm,AD=7cm,∴AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC又∵BF是∠ABC的角平分线∴∠ABF=∠CBF∴∠BFC=∠CBF∴CF=BC=7cm∴DF=CF-CD=7-4=3cm,故答案为3.【点睛】此题主要利用平行四边形的性质,熟练运用即可解题.14、【分析】由题意直接根据分比性质,进行分析变形计算可得答案.【详解】解:,由分比性质,得.故答案为:.【点睛】本题考查比例的性质,熟练掌握并利用分比性质是解题的关键.15、1【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。【详解】解:将10个数据由小到大排序:7、8、8、1、1、1、10、10、10、10,处于这组数据中间位置的数是1、1,那么由中位数的定义可知,这组数据的中位数是(1+1)÷2=1.
所以这组同学引体向上个数的中位数是1.
故答案为:1.【点睛】本题为统计题,考查中位数的意义,解题的关键是准确认识表格.16、x<1【解析】试题解析:若二次根式有意义,则<2,解得x<1.故答案为:x<1.【点睛】本题考查二次根式及分式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数;分式有意义,分母不为2.17、【分析】确定函数的对称轴=-2,即可求出.【详解】解:函数的对称轴=-2,则与轴的另一个交点的坐标为(-3,0)故答案为(-3,0)【点睛】此题主要考查了抛物线与x轴的交点和函数图像上点的坐标的特征,熟练掌握二次函数与坐标轴的交点、二次函数的对称轴是解题的关键.18、4∶1【解析】试题解析:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:1.考点:相似三角形的性质.三、解答题(共66分)19、(1)树AB的高约为4m;(2)8m.【解析】(1)AB=ACtan30°=12×=(米).答:树高约为米.(2)如图(2),B1N=AN=AB1sin45°=×=(米).NC1=NB1tan60°=×=(米).AC1=AN+NC1=+.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大)AC2=2AB2=;(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.20、(1)见解析;(2)见解析;(3).【解析】(1)要想证明△ABH是等腰三角形,只需要根据平行四边形的性质可得∠B=∠ADC,再根据圆内接四边形的对角互补,可得∠ADC+∠AHC=180°,再根据邻补角互补,可知∠AHC+∠AHB=180°,从而可以得到∠ABH和∠AHB的关系,从而可以证明结论成立;(2)要证直线PC是⊙O的切线,只需要连接OC,证明∠OCP=90°即可,根据平行四边形的性质和边AB与⊙O相切于点A,可以得到∠AEC的度数,又∠PCD=2∠DAF,∠DOF=2∠DAF,∠COE=∠DOF,通过转化可以得到∠OCP的度数,从而可以证明结论;(3)根据题意和(1)(2)可以得到∠AED=90°,由平行四边形的性质和勾股定理,由AB=2,AD=,可以求得半径的长.【详解】(1)证明:∵四边形ADCH是圆内接四边形,∴∠ADC+∠AHC=180°,又∵∠AHC+∠AHB=180°,∴∠ADC=∠AHB,∵四边形ABCD是平行四边形,∴∠ADC=∠B,∴∠AHB=∠B,∴AB=AH,∴△ABH是等腰三角形;(2)证明:连接OC,如右图所示,∵边AB与⊙O相切于点A,∴BA⊥AF,∵四边形ABCD是平行四边形,∴AB∥CD,∴CD⊥AF,又∵FA经过圆心O,∴,∠OEC=90°,∴∠COF=2∠DAF,又∵∠PCD=2∠DAF,∴∠COF=∠PCD,∵∠COF+∠OCE=90°,∴∠PCD+∠OCE=90°,即∠OCP=90°,∴直线PC是⊙O的切线;(3)∵四边形ABCD是平行四边形,∴DC=AB=2,∵FA⊥CD,∴DE=CE=1,∵∠AED=90°,AD=,DE=1,∴AE=,设⊙O的半径为r,则OA=OD=r,OE=AE﹣OA=4﹣r,∵∠OED=90°,DE=1,∴r2=(4﹣r)2+12,解得,r=,即⊙O的半径是.考点:1.圆的综合题;2.平行四边形的性质;3.勾股定理;4同弧所对的圆心角和圆周角的关系.21、(1)见解析;(2)见解析;(3)【分析】(1)根据函数的解析式,取x,y的值,即可.(2)描点、连线,画出的函数图象即可;(3)结合函数图象即可求解.【详解】(1)列表:x…﹣2﹣1012…y…82028…(2)画出函数y=2x2的图象如图:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是,故答案为:.22、(1);(2)△BPC面积的最大值为;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)【分析】(1)抛物线的表达式为:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D为顶点的三角形与△ABC相似有两种情况,分别求解即可;(4)作点E关于y轴的对称点E′(-2,9),作点F(2,9)关于x轴的对称点F′(3,-8),连接E′、F′分别交x、y轴于点M、N,此时,四边形EFMN的周长最小,即可求解.【详解】解:(1)把,分别代入得:∴∴抛物线的表达式为:.(2)如图,过点P作PH⊥OB交BC于点H令x=0,得y=5∴C(0,5),而B(5,0)∴设直线BC的表达式为:∴∴∴设,则∴∴∴∴△BPC面积的最大值为.(3)如图,∵C(0,5),B(5,0)∴OC=OB,∴∠OBC=∠OCB=45°∴AB=6,BC=要使△BCD与△ABC相似则有或①当时∴则∴D(0,)②当时,CD=AB=6,∴D(0,1)即:D的坐标为(0,1)或(0,)(4)∵∵E为抛物线的顶点,∴E(2,9)如图,作点E关于y轴的对称点E'(﹣2,9),∵F(3,a)在抛物线上,∴F(3,8),∴作点F关于x轴的对称点F'(3,8),则直线E'F'与x轴、y轴的交点即为点M、N设直线E'F'的解析式为:则∴∴直线E'F'的解析式为:∴,0),N(0,).【点睛】本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握.23、(1)详见解析;(2)【分析】(1)由平行四边形的性质可知AB∥CD,AD∥BC.所以∠B=∠ECF,∠DAE=∠AEB,又因为又∠DAE=∠F,进而可证明:△ABE∽△ECF;(2)由(1)可知:△ABE∽△ECF,所以,由平行四边形的性质可知BC=AD=1,所以EC=BC−BE=1−2=2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江公务员面试模拟105
- 新疆行政职业能力2010年7月
- 河北省公务员面试模拟88
- 宁夏回族自治区申论模拟5
- 二手车买卖协议合同2024年
- 2024年家具买卖合同协议书模板转让协议
- 2024年畜牧业承包合同范本
- 2024年房屋买卖委托协议
- 山东面试模拟14
- 业务营销合作提成合同协议书范本2024年
- 2024-2025学年部编版思想政治高一上学期试卷及答案解析
- 2024年江西省“振兴杯”工业机器人系统操作员竞赛考试题库(含答案)
- JGJ196-2010建筑施工塔式起重机安装、使用、拆卸安全技术规程
- 2024-2030年扭力工具行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 压力容器使用单位每周压力容器安全排查治理报告
- Unit3SportsandFitnessReadingforwriting教学设计2023-2024学年人教版高中英语必修第一册
- 100以内两位数进位加法退位减法计算题-(直接打印版)
- 第五单元 跟作家学写作 把事情写清楚 单元任务群整体 教学设计 -2024-2025学年语文四年级上册统编版
- 大气污染控制工程智慧树知到期末考试答案章节答案2024年青岛理工大学
- 电气控制与PLC课程设计教学大纲
- 点亮人生-大学生职业生涯规划智慧树知到期末考试答案章节答案2024年杭州医学院
评论
0/150
提交评论