2024年高中数学新高二暑期培优讲义第13讲 双曲线(学生版)_第1页
2024年高中数学新高二暑期培优讲义第13讲 双曲线(学生版)_第2页
2024年高中数学新高二暑期培优讲义第13讲 双曲线(学生版)_第3页
2024年高中数学新高二暑期培优讲义第13讲 双曲线(学生版)_第4页
2024年高中数学新高二暑期培优讲义第13讲 双曲线(学生版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页第13讲双曲线【题型归纳目录】题型一:双曲线的定义、条件题型二:求双曲线的标准方程题型三:双曲线的综合问题题型四:轨迹方程题型五:双曲线的简单几何性质题型六:求双曲线的离心率题型七:求双曲线离心率的取值范围题型八:由双曲线离心率求参数的取值范围题型九:双曲线中的范围与最值问题题型十:焦点三角形【知识点梳理】知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.知识点诠释:1、双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2、若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3、若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4、若常数满足约束条件:,则动点轨迹不存在;5、若常数,则动点轨迹为线段F1F2的垂直平分线.知识点二:双曲线的标准方程1、当焦点在轴上时,双曲线的标准方程:,其中;2、当焦点在轴上时,双曲线的标准方程:,其中椭圆、双曲线的区别和联系:椭圆双曲线根据|MF1|+|MF2|=2a根据|MF1|-|MF2|=±2aa>c>0,a2-c2=b2(b>0)0<a<c,c2-a2=b2(b>0),(a>b>0),(a>0,b>0,a不一定大于b)(a最大)(c最大)标准方程统一为:方程Ax2+By2=C(A、B、C均不为零)表示双曲线的条件方程Ax2+By2=C可化为,即,所以只有A、B异号,方程表示双曲线.当时,双曲线的焦点在x轴上;当时,双曲线的焦点在y轴上.知识点诠释:3、当且仅当双曲线的对称中心在坐标原点,对称轴是坐标轴,双曲线的方程才是标准方程形式.此时,双曲线的焦点在坐标轴上.4、双曲线标准方程中,a、b、c三个量的大小与坐标系无关,是由双曲线本身所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c>a,c>b,且c2=b2+a2.5、双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上.6、对于双曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上.知识点三:求双曲线的标准方程①待定系数法:由题目条件确定焦点的位置,从而确定方程的类型,设出标准方程,再由条件确定方程中的参数、、的值.其主要步骤是“先定型,再定量”;②定义法:由题目条件判断出动点的轨迹是什么图形,然后再根据定义确定方程.知识点四:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质范围双曲线上所有的点都在两条平行直线x=-a和x=a的两侧,是无限延伸的.因此双曲线上点的横坐标满足x≤-a或x≥a.对称性对于双曲线标准方程(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心.顶点①双曲线与它的对称轴的交点称为双曲线的顶点.②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(-a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点.③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,-b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴.实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b.a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长.①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆.②双曲线的焦点总在实轴上.③实轴和虚轴等长的双曲线称为等轴双曲线.离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作.②因为c>a>0,所以双曲线的离心率.由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔.所以离心率可以用来表示双曲线开口的大小程度.③等轴双曲线,所以离心率.渐近线经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是.我们把直线叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交.知识点四:双曲线两个标准方程几何性质的比较标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点轴实轴长=,虚轴长=离心率渐近线方程知识点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上.知识点五:双曲线的渐近线(1)已知双曲线方程求渐近线方程:若双曲线方程为,则其渐近线方程为已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程.(2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求出即可.(3)与双曲线有公共渐近线的双曲线与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上)(4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为.知识点六:双曲线中a,b,c的几何意义及有关线段的几何特征:双曲线标准方程中,a、b、c三个量的大小与坐标系无关,是由双曲线本身的形状大小所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c>b>0,c>a>0,且c2=b2+a2.双曲线,如图:(1)实轴长,虚轴长,焦距(2)离心率:;(3)顶点到焦点的距离:,;【典例例题】题型一:双曲线的定义、条件例1.已知动点满足,则动点P的轨迹是()A.双曲线 B.双曲线左支C.双曲线右支 D.一条射线例2.方程所表示的曲线是(

)A.圆的一部分 B.椭圆的一部分C.双曲线的一部分 D.直线的一部分题型二:求双曲线的标准方程例3.求适合下列条件的双曲线的标准方程:(1)焦点为,,且双曲线上的一点到两个焦点距离之差为2;(2)焦点在y轴上,焦距为10,且经过点;(3)经过点,.题型三:双曲线的综合问题例4.(多选题)已知双曲线的左、右焦点分别为,,过原点的直线与双曲线交于A,B两点,若四边形为矩形且,则下列正确的是(

)A. B.E的渐近线方程为C.矩形的面积为 D.E的离心率为题型四:轨迹方程例5.已知,若动点P满足直线与直线的斜率之积为,则动点P的轨迹方程为(

)A. B.C. D.例6.动圆P过定点M(0,2),且与圆N:相内切,则动圆圆心P的轨迹方程是(

)A. B.C. D.例7.已知一个动圆P与两圆和都外切,则动圆P圆心的轨迹方程为(

)A. B.C. D.题型五:双曲线的简单几何性质例8.已知是双曲线的两个焦点,若双曲线的左、右顶点和原点把线段四等分,则该双曲线的焦距为(

)A.1 B.2 C.3 D.4例9.已知双曲线的渐近线方程为,若双曲线C的焦点到渐近线的距离为12,则双曲线C的焦距为(

)A.30 B.24 C.15 D.12题型六:求双曲线的离心率例10.若直线与双曲线的一条渐近线平行,则实数的值为()A. B. C. D.例11.已知双曲线()的左右焦点分别是,,点在第一象限且在的渐近线上,是以为斜边的等腰直角三角形,则双曲线的离心率为(

)A. B. C.3 D.2题型七:求双曲线离心率的取值范围例12.已知双曲线的左、右焦点分别为,,点在双曲线的右支上,且,则双曲线离心率的取值范围是(

)A. B. C. D.例13.已知点F是双曲线的左焦点,点是该双曲线的右顶点,过且垂直于轴的直线与双曲线交于,两点,若是钝角三角形,则该双曲线的离心率的取值范围是(

)A. B.(1,2)C. D.例14.已知双曲线=1(a>0,b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0),点P在双曲线的右支上,且满足,则该双曲线离心率的取值范围是(

)A.(2,+∞) B.(1,2) C.(1,) D.(2,)题型八:由双曲线离心率求参数的取值范围例15.已知,是双曲线C的两个焦点,P为C上一点,且,,若C的离心率为,则的值为______.例16.若双曲线的离心率不大于,则C的虚轴长的取值范围为___________.题型九:双曲线中的范围与最值问题例17.已知双曲线的方程为,如图所示,点,是圆上的点,点为其圆心,点在双曲线的右支上,则的最小值为______例18.已知是双曲线的右焦点,动点在双曲线左支上,为圆上一点,则的最小值为_______________.题型十:焦点三角形例19.已知点F1,F2分别是双曲线=1的左、右焦点,若点P是双曲线左支上的点,且,则△的面积为____.例20.已知点分别是双曲线的下、上焦点,若点是双曲线下支上的点,且,则的面积为________.【过关测试】一、单选题1.与两圆及都外切的圆的圆心的轨迹为(

)A.椭圆 B.双曲线的一支 C.抛物线 D.圆2.已知点,,动点满足条件.则动点的轨迹方程为(

)A. B.C. D.3.已知双曲线上一点到左焦点的距离为10,则的中点到坐标原点的距离为(

)A.3或7 B.6或14 C.3 D.74.已知双曲线,点为其两个焦点,点为双曲线上一点,若,则三角形的面积为(

)A.2 B. C. D.二、填空题5.已知直线和双曲线,若l与C的右支交于不同的两点,则t的取值范围是______.6.已知双

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论