麦肯锡-科莱恩化工智慧生产研讨会 CPS workshop on Digital Manufacturing-20170720_第1页
麦肯锡-科莱恩化工智慧生产研讨会 CPS workshop on Digital Manufacturing-20170720_第2页
麦肯锡-科莱恩化工智慧生产研讨会 CPS workshop on Digital Manufacturing-20170720_第3页
麦肯锡-科莱恩化工智慧生产研讨会 CPS workshop on Digital Manufacturing-20170720_第4页
麦肯锡-科莱恩化工智慧生产研讨会 CPS workshop on Digital Manufacturing-20170720_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CONFIDENTIALANDPROPRIETARYAnyuseofthismaterialwithoutspecificpermissionofMcKinsey&CompanyisstrictlyprohibitedMcKinseyDigitalIntroductiontoDigitalManufacturing/Industry4.0NilsMüller

|July20,2017AgendaforCPStrainingdayTimeModelfactoryinaBoxExperiencecurrentstateExercisesonprofitperhourtargetfunction,datacapturinganddecisiontreesExperienceimprovedfuturestateGroup1Group28:00-12:0012:00-12:30IntroductiontoDigitalManufacturingWhatisDigitalManufacturing?IntroductiontoitscoreelementsandtypicalimprovementleversChallengesinimplementingDigitalManufacturingIntroductiontoDigitalManufacturingWhatisDigitalManufacturing?IntroductiontoitscoreelementsandtypicalimprovementleversChallengesinimplementingDigitalManufacturingModelfactoryinaBoxExperiencecurrentstateExercisesonprofitperhourtargetfunction,datacapturinganddecisiontreesExperienceimprovedfuturestate12:30-16:30LunchAgendaforthissessionIntroductiontoDigitalManufacturing/Industry4.0–whatishappeningintheIndustryandwhydowethinkweshouldactCoreleversforChemicalscompanies–concreteusecasesBreakWhatdoesthismeanforCPS–howtomovefromLeantoDigitalLean:coreconceptofDigitalManufacturingDiagnosticOpenQ&A8:00-9:009:00-10:0010:00-10:1510:15-11:3011:30-12:00AgendaforthissessionIntroductiontoDigitalManufacturing/Industry4.0–whatishappeningintheIndustryandwhydowethinkweshouldactCoreleversforChemicalscompanies–concreteusecasesBreakWhatdoesthismeanforCPS–howtomovefromLeantoDigitalLean:coreconceptofDigitalManufacturingDiagnosticOpenQ&A12:30-13:3013:30-14:3014:30-14:4514:45-16:0016:00-16:30Whydowetalkabout“Digital”andIndustry4.0?

Pace&magnitudeoftechnologicalchangeisstaggeringTheaveragewashingmachinetodayhasmorecomputingpowerthanNASAusedinitsApollo11missionin1969Moreinformationiscreatedevery2days

thanfrom0AD-2003ADMoretextmessagesaresenteachdaythanthepopulationoftheplanet100hoursofvideoareuploadedeveryminute35%ofallphotostakenarepostedtoFacebook10yearsago,sequencingahumangenometook$50millionandseveralyears;todayittakes<$10,000andafewdaysSOURCE:McKinseyOurdefinitionofIndustry4.0SOURCE:McKinseyQuarterly:TheInternetofThings(2010);McKinseyIndustry4.0

TheapplicationoftheInternetofThings(IoT)intraditionalindustries:

sensorsineverything,networkseverywhere,analyzeeverythingTheIoT1SensorsandactuatorsembeddedinphysicalobjectsLinkedthroughwired/wirelessnetworksCollectionofhugevolumesofdatathroughnetworksforanalysisObjectscansensetheenvironmentandcommunicate,thusbecomingtoolsforunderstandingcomplexityandrespondingtoit1AsdefinedbyBosch(foundingmemberoftheIndustry4.0platform,aninitiativeacrossindustryassociations),"theIoTisthenextgenerationoftheInternet.ItisaglobalsystemofIP-connectedcomputernetworks,sensors,actuators,machines,anddevices.MergingthisphysicalworldwiththevirtualworldoftheInternetandsoftwareenablescompaniesandconsumerstocreateandenjoynewservicesthatarefoundedonWeb-basedbusinessmodels.Thiswillhaveabigimpactonthewaywedobusiness."ManufacturingalreadygeneratesmoredatathananyothersectorPetabytesConstructionConsumerandRecreationalServicesResourceIndustriesUtilitiesWholesaleTransportationInsuranceEducationHealthcareSecuritiesandInvestmentServicesManufacturingGovernmentBankingCommunicationsandMediaRetailProfessionalServicesSOURCE:IDC;McKinseyGlobalInstituteanalysis1Discretemanufacturingconstitutes1072petabytes;Processmanufacturing740petabytesAnnualnewdatastoredbysector,2010Industry4.0isoftencalledthe4thIndustrialRevolutiondramaticallyshapingIndustryandourwaystoproduceSOURCE:StatistischesBundesamt;DeutscheBundesbank;Prognos;ThomasNipperdey;McKinsey1strevolution

2ndrevolution

4threvolution

3rd

revolution

Industry4.0isoftencalledthe4thIndustrialRevolutiondramaticallyshapingIndustryandourwaystoproduceSOURCE:StatistischesBundesamt;DeutscheBundesbank;Prognos;ThomasNipperdey;McKinsey1strevolution

(Water/Steam)2ndrevolution(Electricity)4threvolution

(Cyberphysicalsystems)Percent

ofinstalledbase100~10-20~30-50~80-90ReplacementofequipmentReplacement

ofcompleteloomnecessaryLittlereplacement,

astoolingequipmentcouldbekept,onlyconveyorbeltneededExistingmachineswillbeconnected,onlypartialreplacementofequipmentHighlevelofreplace-mentastoolingequipmentwasreplacedbymachines3rd

revolution

(Automation)From……to…Industry4.0isstillsomewhathypedinthemedia,long-termimplicationsandimpactstillnotfullyappreciatedSOURCE:McKinseyIndustry4.0GlobalExpertSurvey2015,1GoogleTrendsgivesestimateaboutsearchtrends(numberofqueriesforkeyword)/(totalgooglesearchqueries)8030701005040206010900201120132015GoogleTrendsgraphfor“Industrie4.0”inGermany1

RelativepercentageInterestonIndustry4.0asatopicisincreasedoverlastyearsShareof"Industrie4.0"(I4.0)queriesrelatedtototalsearchqueriessteadilyincreasingLong-termpotentialandimplicationsofI4.0effortsonplantsstillunder-appreciated2012201420172016Industry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyDisruptive

technologiesTransformintoadigitalcompanyReach

nexthorizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue

poolsDisruptive

technologiesTransformintoadigitalcompanyReach

nexthorizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue

poolsIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyIndustry4.0:Disruptivetechnologiesthatwillchangethemanufacturingsectorbetweentodayand2025Industry4.0Analyticsand

intelligenceConversiontophysicalworldData,computationalpowerandconnectivityHumanmachineinteractionBigdata/opendataInternetofThings/Machine-tomachineCloudtechnologyTouchinterfacesandnext-levelgraphicaluserinterfacesVirtualandaugmentedrealityDigitizationandautomationofknowledgeworkAdvancedanalyticsAdditivemanufacturing

(i.e.,3DPrinting)Advancedrobotics(e.g.,human-robotcollaboration)EnergystorageandharvestingDISRUPTIVETECHNOLOGIESSOURCE:McKinseyTechnologicallimitationshavefinallybeenovercome–nowisthetimeforIndustry4.0LPWA1technologiesprovidewirelessinfrastructuretoconnectthousandsofIoTnodesPricesforIoThardwareexpectedtobeaslowasUSD1perIoTnodeinthenearfutureConnectivityAffordabilityInteroperability1Lowpowerwidearea

2Machine-to-machineCommunicationprotocolsespeciallydesignedforseam-lessM2M2inter-

actionhavebeendevelopedSOURCE:McKinseyDISRUPTIVETECHNOLOGIES1mbps10kbps1gbps100kbps100mbps10mbps100km1kbps100bps1km10km100m10mDatarate,logscale

Range,logscale

Nowisthetime–newwirelesstechnologiesprovideLPWAinfrastructure(802.11n)1IPv6overLowpowerWirelessPersonalAreaNetworksCurrentwirelessconnectivitytechnologiesCurrentlyavailableconnectivitystandardsrepresentatrade-

offbetweenrangeandtrans-missionrateManystandardsforlow-rangeconnectivityavailable;someopenstandardslike6LoWPAN1

makingafurthersteptowardsconnectingdevicesacrossdifferentnetworktypes(e.g.,integratingWi-Ficlientswith802.15.4-baseddevices)Justrecently,newtechnolo-gieswithultra-widerangesandlowdatarateshavebeenintroduced–thesetechnologiesareveryenergy-efficient

(IoTnodescanlastforyearswiththesamebatterypack)Keyinsightsandlearnings231123802.15.4SOURCE:McKinseyDISRUPTIVETECHNOLOGIESIndustry4.0quiz

Yourturn–1voteperquestion1GBstoragecostsonaverageUSD0.03.

Whatusedtobethepricein1992?YourvoteUSD1,000USD5,000USD10,000USD20,0001234DISRUPTIVETECHNOLOGIESSOURCE:McKinseySignificantdecreaseofcostfordatastorage,

computationandtransmissionSOURCE:DeloitteUniversityPress,,/users/hpm/book97/ch3/processor.list.txt,/internet-of-things-hardware,/product/CC3100/description;McKinseyStorageComputationConnection$perGB$per1milliontransistors$permbps10,000.001.0010.001,000.00100.000.100.012015101992200010,000.01,000.0100.010.01.00.120151020001.0000.1000.0100.0011,000.000100.00010.00020151020001992$222

$0.01$10,000

$0.03$1,200

$0.63DISRUPTIVETECHNOLOGIESCostofInternetofThingsnodeshascomedowndramatically,andisexpectedtofallstillfurtherOther4

~1.01.0-2.0-50%Sensor3

2020E52015MCU1

Connectivity2~1.02.5-4.00.3-1.00.1-0.8Unitprice,USDNosignificantcostsassociatedwithInternetofThingsconnectivityanymorePricesexpectedtocontinuetofalloverthenextfewyearsAdditionalcostsavingpotentialfromfutureintegrateddesignsolutionsCalculationdoesnotincludefixedcostssuchascostsforinfrastructure1CurrentpricesrangefromUSD0.3(e.g.,Cypress32-bit)toUSD1.2(e.g.,TI16-bit)dependentonspeed,quality,andintegratedmemorysize(rangesforlargerordervolumes)2Combinationoffiltertransceiverandantenna–additionalcostsforswitchesandamplifiersnotincluded3Forexample,temperature,position,pressure,gyroscope...4AdditionalcomponentslikeADCconverters,power-managementconverters,capacitors,resistor,fuse,PCB(listnotexhaustive)52020pricesestimatedbyinflatingcurrentpriceswithaCAGRof-15%p.a.SOURCE:;expertopinionDISRUPTIVETECHNOLOGIESArtificialintelligencesystemsalreadyautomate

tasks

thatusedtorequirehighlytrainedexpertsIBMWatson,

oncologyadvisorAragoAutopilotfor

ITservicemanagementSeveralUShospitalsuseWatsontoderiverecommendationsforindividualizedtreatmentplansforcancerpatientsSystemhasbeen"trained"withmillionsofmedicalresearcharticles,clinicaltrialreports,patienthistories,andfeedbackonproposedsolutionsfromspecialistdoctorsGoalistousesystemtobringleading-edgecancertherapiestocommunitysettingswithlimitedaccesstohigh-qualitymedicalcareSystemautomatesITservicemanage-ment(e.g.,ITILincident,problem,changemanagement)Algorithmsdonotexecutestaticscriptsbutdynamicallycombine"knowledgemodules"tohandlenewsituationsandlearnfromtheoutcomesSoftwareenablesaverageautomationratesof~90%leadingtoaverage

costreductionsof~30%(externalassessmentbyGartner)aswellasperformanceimprovementsSOURCE:McKinseyDISRUPTIVETECHNOLOGIESNewformsofhumanmachineinteractioncanfurther

optimizeproductionprocessesSOURCE:Festo;Microsoft;UbimaxDescriptionPossibleIndustry4.0applicationExoskeletonsFestoExoHandExoskeletonemulatesphysiologyofhumanhandCansupportstrainingmanualmovements(wornasglove)andtransmithumanhandmovementstorobothandAccelerationofprocessesthatrequirestrainingmanualworkbyenablingworkerstodothemfasterandmoreoftenEnablingofremotehandlingofdangerousgoodsGesturerecognitionMicrosoftKinectInputdeviceforWindowsPCsenablesgesture,facial,andvoicerecognitionDocumentationofcomponentqualityflawsbypointingatanon-screen3-DrepresentationAugmentedrealityUbimaxappsonGoogleGlassApplicationsonGoogleGlassshowlocation-basedinstructionstoworkers(e.g.,directionswheretogo,howtocompleteatask)Moreefficientwarehouse/assembly/serviceprocessesVirtualtrainingofworkersRemoteassistancewithplantmaintenanceDISRUPTIVETECHNOLOGIES3Dprintingnowadaysnotonlypossibleforpolymers

andmetals,butalsoceramicsSOURCE:3,3DISRUPTIVETECHNOLOGIESCERAMICSEXAMPLESSignificanttechnologicaladvancesin3Dprintingalreadyachievedwithinthelast25yearsSOURCE:WohlersReport;McKinseyResearch;McKinsey1Overallcostsincludingenergyandfacilities,maintenance,labor,machine,andmaterials 2ExemplarycalculationforDMLStechnology 3BasedonSLSSinterstation2000for1990and3DSsPro230HSfor2014;however,highdependenceonexactpartthatisbeingprinted41988and2012datapointsforIndustrialAMprintersMaterialsTypeMaximumsize3m3Laserpower3WattSoldindustrialprinters4Numberp.a.Manufacturersof3Dprinters4Number3Dprinting1EURperpart2Maximumspeed3cm3perhr1990sToday(2014)Polymers

andmetalsAdditionally,glass,biocells,sugar,cement~0.03~0.23~50~200~30~9,800<5~40~12.0~5.0~1,600~4,900>+1,000%+300%>+1,000%>+1,000%-60%+200%DISRUPTIVETECHNOLOGIESFirstHRCapplicationshavebeensuccessfully

introducedatautomotiveOEMsSOURCE:McKinsey,companyhomepageAudi,Ingolstadt1

Pickingandhandoverofcoolantexpansionreservoirfromlarge-loadcarrierAssemblyandinstallationcoolantexpansionreservoirbyoperator(handlingofodd-shapedpartsstillrequired)ImprovedergonomicsandreducedlevelsofworkerfatigueApplicationhassuccessfullygonethroughcertificationfromtheOEMsliabilityinsuranceRobotsupportsoperatorindoorassemblylineRobothandlespositioningandpressingofdoorsealswhichrequiresprecision,highforceandconstantpressureUpto70%offloorspacesavingsiminassembly-nearareasbyavoidingperiphericsafetyshieldsandbarriersBMW,Spartanburg21Finalassembly,AudiIngolstadtplant2Doorassemblyline,BMW,SpartanburgplantDISRUPTIVETECHNOLOGIESPaceofchangewillbeslowercomparedtotheconsumerInternetduetolargedownsiderisksincaseoffailure…SOURCE:Pressclippings1http:///companystory/downtime-costs-auto-industry-22k-minute-survey-4810172

http://www.vdi.de/artikel/gute-perspektiven-fuer-standort-deutschland-durch-industrie-40;onlytheofficiallyreportedcases–realdamageisexpectedtobebigger3http:///2014/12/31/business/a-year-of-record-recalls-galvanizes-auto-industry-into-action.html?_r=2CybersecurityriskEUR50bnAnnualdamage

totheGermanmanufacturingindustrycaused

bycyberattacks2Numberofcarsthatwererecalledin2014throughouttheUS3

60mQualitylossriskCostsintheautomotiveindustryperday1–weighrisksofintroductionofnewtechnologyagainstprocessreliabilityProductiondowntimeriskEUR28mDISRUPTIVETECHNOLOGIES<1,89,56,0<12,015,0…andduetosignificantlylongerinvestmentcyclesAverageusageperioduntilreplacement,yearsSOURCE:ReconAnalytics;Siemens;USInternalRevenueServiceManufacturingequipmentSteelAutomotiveChemicalsElectronicsSmartphoneDISRUPTIVETECHNOLOGIESIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessOPERATIONALEFFECTIVENESSSOURCE:McKinseyTransformintoadigitalcompanyAdaptbusinessmodelstocaptureshiftingvalue

poolsReachnext

horizonofoperationaleffectivenessDisruptive

technologiesFromabaseof30,000datatags,closetozerotagsareusedtoinformoperationaldecisionsInacaseexample,99%ofalldatafromanoilrigwaslostbeforereachingoperationaldecisionmakers~30,000tagsmeasuredCommentPeopleandprocessesSchedulepredominantlybasedonOEM-recommendedmaintenanceintervalsDatamanagementDatacannotbeaccessedinrealtime,enablingonlyadhocanalysisInfrastructureOnly~1%canbestreamedonshorefordaytodayuseData

capture~40%ofalldataisneverstored–remainderisstoredlocallyoffshoreDeploymentNointerfaceinplacetoenablerealtimeanalyticsto"reach"offshoreAnalyticsReportinglimitedtoafewKPIswhicharemonitoredinretrospect0%~1%60%100%<1%<1%SOURCE:McKinseyOPERATIONALEFFECTIVENESSILLUSTRATIVESOURCE:McKinseyBeforeIndustry4.0OPERATIONALEFFECTIVENESSManualcheckingofbearing;replaceevery30daysregardlessofconditionWiredcommunicationwithcontrolcenterExactyieldpercoilunknownIdentifieddefectcreatedbyPaperMachineincardboardhastobescrapedIndividualcontrolroomforspecificmachine;novisibilitytoup/downstreamprocessesExcessiveWIP;notrackingsystemmakesiteasierforcoilstogetlostSignificantexcesslabormanagingunoptimizedflowpathandhardtolocateinventoryUnoptimizedpreventivemaintenanceschedulewithallpartschangedonsettimesILLUSTRATIVEBeforeIndustry4.0SOURCE:McKinseyOPERATIONALEFFECTIVENESSAfterIndustry4.0transformationSOURCE:McKinseyILLUSTRATIVEOPERATIONALEFFECTIVENESSAGVsimproveslaborefficiencyandprocessingtimeformaterialhandlingReducemachinedowntimeControlsmanymachinesMonitorsqualityandcomponentperformanceinadditiontothroughputUsesadvancedanalyticstoupdateparametersinrealtimetoimprovequalityandyieldPiezoElectricSensormeasuringvibrationonbearing;onlyreplacedifconditionrequiresImproveyieldImprovequalityIncreaselaborefficiencyCommonoperatingpictureBatchmatchingtodemandPreventiveMaintenanceSpectrometerQualityissuesidentifiedinrealtimewithdatarelayedtocontrolroomforadvancedanalyticsandparameteradjustmentYieldinputandoutputdatarelayedtocontrolroomforadvancedanalyticsandparameteradjustmentRFIDtagsoncoilsallowpreciselocationandtriggerautomaticKanbanwhenstockisdepletedWirelesscommunicationwithcontrolcenterOptimizedpreventivemaintenanceschedulebasedonrealtimecomponentmonitoringDigitizeperformancemanagementthroughrealtimedataandalarmsCommonoperatingpictureIncreaselaborefficiencyAfterIndustry4.0transformationILLUSTRATIVESOURCE:McKinseyOPERATIONALEFFECTIVENESSSOURCE:I,Steuler-ab.de(picture)Real-timeprocessadaptation:Productivityincreasethroughlimekilnmid-zonetemperaturemonitoring/adjustmentbasedonsophisticateddataanalyticsSensing–sensorsinakiln’smid-zonemonitorlimemudtemperature,aleadingindicationofcalcinationDataaggregation&analysis–temperaturereadingsarecombinedtosimulatetheheatprofileofthekilnDecisionmaking&actuation-basedontheinferredheatprofile,theshapeandintensityoftheflamedrivingheatthroughthekilnisoptimizedPULP&PAPERINDUSTRYImpact: 6%fuelsavings

16%limethroughputincreaseOPERATIONALEFFECTIVENESSBoschusesSICK'sRFIDtechnologytoenableautonomoustransportsystemsSOURCE:SICKinsightmagazine,July2014;

McKinsey1Radio-frequencyidentification 2MethodtomanageproductionprocesscontrolStartingpointRFIDsystemintroducedImprovementsAlldataregardinggoodsflowscollectedmanuallybyfillingoutpapercardsandenteringinforma-tionintoITsystemApproachhighlyerror-proneandasynchronous–informationflowlaggingbehindphysicalgoodsflowGoodsandtransportcontainersallequippedwithRFID1

trans-pondersthatcanbetrackedinrealtimeviaRFIDkanban2

systemIndividualobjectscanbeunambiguouslyidentifiedWheneveraunitisremovedfromthewarehouse,theRFIDsystemautomaticallytransfersinformationtotheSAPsystemAssoonasminimuminventorylevelisreached,pullsignalistriggeredtorefillstockAvailabilityofdataenablesinteractionwithcustomersandsuppliersforend-to-endprocessoptimizationImpact"Theproductionprocessisimprovingallonitsown.Newdataleadstonewknowledge.Newknowledgeleadstoimprovementsinthesystem."(Boschprojectmanager)OPERATIONALEFFECTIVENESSCondition-basedmaintenance:Decisionsupportcentertomonitorandidentifyearlywarningsonrotatingequipmenton~200platforms100%0%EquipmentconditionEquip-

mentlife

EventsandminordamagePotentialFailure

damagethatneedsrepairOperationsrunningwithoutproblemsAlert,e.g.fromvibrationorbearingtemp.FunctionalFailureInputfromequipmentPredictiveanalyticsEngineeringanalysisReportandrecom-mendationsTool1Tool2Tool3PatternrecognitionTagsfromcurrentmachinerycanbeusedtotellanomaliesPatternrecognitionisdoneagnostictovendorAnalytictoolsareusedtoidentifyrootcausestoanomaliesRecommen-dationsIncreasedmaintenanceplanningandrepairtimeMachinerytags(speed,current,etc.)VibrationsensorsSOURCE:McKinseyOPERATIONALEFFECTIVENESSEnablesworkers

tolocateproductsfasterandmoreprecisely,scansproductsautomaticallyGivesworkersexactinstructionshowandwheretostackproductsforpalletbuildingoptimizationKnapp'sKiSoftVisionguideswarehouseworkerswithvisualpromptsHelpsworkersoptimizecubestackingandensuresecurelocationsforfragileitemsSOURCE:;McKinseyKnappAGhasdevelopedaugmentedrealityglasses

toincreasetheefficiencyofwarehouseworkersOPERATIONALEFFECTIVENESSThewarehouseof2020willbehighlyautomatedSwarmAGVrobotsprovidingefficientgoods-to-manFlexiblemanagementofnumberofshelfsRandomlocationstrategyAdvancedsortingsystemwithopticalrecognitionofproductsPickingrobotforsingleitempickingAssistedmanualpickingsystem,e.g.man-to-goodsviaSwarmAGVs,smartglasses,…AGVconnectingconveyorbeltwithpickingareaHighspeed,highcapacitymulti-shuttlesystemShuttleabletoleaverackandoperateasAGVWMSautonomouslymanageinventory,real-timeconnectiontoorderingsystemAnalyticstoolsincreasingperformanceOPERATIONALEFFECTIVENESSSOURCE:McKinseyAmazonDistributioncenterPostalhub(e.g.DHL)CustomerAddressinformationOrderDeliver‘untagged’tohubFilloutpartialstreetaddressesorzipcodestogetitemsclosertowherecustomersneedthem,andlatercompletethelabelintransitAmazonplanstoshipbasedonpreviousorders/otherfactors.ParcelswaitathubsorontrucksuntilanorderarrivesAmazonmightsuggestitemsalreadyintransittocustomersusingitswebsitetoensuretheyaredeliveredAmazon’salgorithmsmightcauseerrors,promptingcostlyreturns.Tominimizethosecosts,Amazonsaiditmightconsidergivingcustomersdiscounts,orconverttheunwanteddeliveryintoafreegiftPredictiveShippingPatentShopping-cartcontentsReturnsTimeofcursorhoveringPreviousordersProductsearchesWishlistsSourcesofPredictionsTendertocommoncarrieratfulfillmentcenterSOURCE:McKinseyCustomerExperiencePractice,A,BBC,WSJCan’tweleveragetheinformationtoshipBEFOREthe

customerhasordered?Amazon's“predictiveshipping”doesitOPERATIONALEFFECTIVENESSIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyNEWBUSINESSMODELSDisruptive

technologiesTransformintoadigitalcompanyReachnext

horizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue

poolsThereare4maintrendsregardingnewbusinessmodelsthatexploitopportunitiesSOURCE:McKinsey1 Intellectualpropertyrights

PlatformsProvisioningofTechnologyplatforms:ecosystemsfordevelopersbasedonopensystemsBrokerplatforms:industrialspotmarketsthatconnectthirdparties(e.g.,forexcessproductioncapacity)Data-drivenbusinessmodelsUsageof(crowd-sourced)dataforDirectmonetizationofcollecteddatainsteadofprimaryproduct(e.g.,Google)Indirectmonetizationofinsightsfromcollecteddata

(e.g.,micro-segmentationforpricingorcustomization)Pay-by-usage/subscription-basedmodels

formachineryNewpaymentmodelstransformCapex

intoOpexformanufacturersPerpetuationofrevenuestreamsinsteadofone-offassetsaleforsuppliersAs-a-servicebusinessmodelsIPR1-basedbusinessmodelsIPR-basedservicesRecurringrevenuemodels(e.g.,licensingfeesfordatastandards)Add-onservicesforprimaryproducts(e.g.,consultingonbestusageofproducts)NEWBUSINESSMODELSExampleJohnDeere:frommanufacturingtractorstoofferingsophisticatedonlineservicesforfarmersJohnDeere:theymaketractors,right?NowusesensorsaddedtotheirlatestequipmenttohelpfarmersmanagetheirfleetandtodecreasedowntimeoftheirtractorsaswellassaveonfuelTheinformationiscombinedwithhistoricalandreal-timedataregardingweatherprediction,soilconditions,cropfeaturesandmanyotherdatasetsTheinformationispresentedintheMyJohnDplatformaswellasontheiPadandiPhoneappMobileFarmManagerinordertohelperfarmersfigureoutwhichcropstoplantwhereandwhen,whenandwheretoplough,wherethebestreturnwillbemadewiththecropsandevenwhichpathtofollowwhenploughingSOURCE:JohnDeerestatements;DataFloqNEWBUSINESSMODELS–IPR-BASEDBUSINESSMODELSSOURCE:Rolls-Royceannualreports;Rolls-R;McKinseyRolls-Royceoffersfullafter-salesservice

modelbasedonpredictivemaintenanceNEWBUSINESSMODELS–PAYBYUSAGERatherthansellingturbinestocustomers,Rolls-Roycenowrentsthemoutona"timeonwing"basisaspartoftheirTotalCareofferingBefore:servicerepairsduringenginedowntimemeantrevenuesforOEMNow:

OEMtoensureengineavailability,customerspayforuptimeonly–allrisksassociatedwithengineaftercarestaywithOEMHow:newbusinessmodelenabledbyadvancedbigdatacapabilitiessinceRolls-Roycecanaccuratelypredictenginefailuresseveraldaysbeforetheyoccur(predictivemaintenance)Result:

improvedsafety,improvedcustomerservice,andlowerservicecostsImpactRolls-RoyceexpectstheshareofLTSAs1,includingTotalCare,torisefrom73%oftheirinstalledfleetin2012toover90%overthenextdecade1 LongTermServiceAgreementDetails–SCIO,acrowd-sourcedapproach

tospectroscopySOURCE:McKinseyNEWBUSINESSMODELS–DATADRIVENTypicalspectrometerScientificapplication–mainlyusedinphysicsandchemistryapplicationsIsoftenthesizeofalaptopTypicallypricedatUSD10,000andaboveConsumerapplication–afterscanninganobject,theuserre

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论