版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CONFIDENTIALANDPROPRIETARYAnyuseofthismaterialwithoutspecificpermissionofMcKinsey&CompanyisstrictlyprohibitedMcKinseyDigitalIntroductiontoDigitalManufacturing/Industry4.0NilsMüller
|July20,2017AgendaforCPStrainingdayTimeModelfactoryinaBoxExperiencecurrentstateExercisesonprofitperhourtargetfunction,datacapturinganddecisiontreesExperienceimprovedfuturestateGroup1Group28:00-12:0012:00-12:30IntroductiontoDigitalManufacturingWhatisDigitalManufacturing?IntroductiontoitscoreelementsandtypicalimprovementleversChallengesinimplementingDigitalManufacturingIntroductiontoDigitalManufacturingWhatisDigitalManufacturing?IntroductiontoitscoreelementsandtypicalimprovementleversChallengesinimplementingDigitalManufacturingModelfactoryinaBoxExperiencecurrentstateExercisesonprofitperhourtargetfunction,datacapturinganddecisiontreesExperienceimprovedfuturestate12:30-16:30LunchAgendaforthissessionIntroductiontoDigitalManufacturing/Industry4.0–whatishappeningintheIndustryandwhydowethinkweshouldactCoreleversforChemicalscompanies–concreteusecasesBreakWhatdoesthismeanforCPS–howtomovefromLeantoDigitalLean:coreconceptofDigitalManufacturingDiagnosticOpenQ&A8:00-9:009:00-10:0010:00-10:1510:15-11:3011:30-12:00AgendaforthissessionIntroductiontoDigitalManufacturing/Industry4.0–whatishappeningintheIndustryandwhydowethinkweshouldactCoreleversforChemicalscompanies–concreteusecasesBreakWhatdoesthismeanforCPS–howtomovefromLeantoDigitalLean:coreconceptofDigitalManufacturingDiagnosticOpenQ&A12:30-13:3013:30-14:3014:30-14:4514:45-16:0016:00-16:30Whydowetalkabout“Digital”andIndustry4.0?
Pace&magnitudeoftechnologicalchangeisstaggeringTheaveragewashingmachinetodayhasmorecomputingpowerthanNASAusedinitsApollo11missionin1969Moreinformationiscreatedevery2days
thanfrom0AD-2003ADMoretextmessagesaresenteachdaythanthepopulationoftheplanet100hoursofvideoareuploadedeveryminute35%ofallphotostakenarepostedtoFacebook10yearsago,sequencingahumangenometook$50millionandseveralyears;todayittakes<$10,000andafewdaysSOURCE:McKinseyOurdefinitionofIndustry4.0SOURCE:McKinseyQuarterly:TheInternetofThings(2010);McKinseyIndustry4.0
TheapplicationoftheInternetofThings(IoT)intraditionalindustries:
sensorsineverything,networkseverywhere,analyzeeverythingTheIoT1SensorsandactuatorsembeddedinphysicalobjectsLinkedthroughwired/wirelessnetworksCollectionofhugevolumesofdatathroughnetworksforanalysisObjectscansensetheenvironmentandcommunicate,thusbecomingtoolsforunderstandingcomplexityandrespondingtoit1AsdefinedbyBosch(foundingmemberoftheIndustry4.0platform,aninitiativeacrossindustryassociations),"theIoTisthenextgenerationoftheInternet.ItisaglobalsystemofIP-connectedcomputernetworks,sensors,actuators,machines,anddevices.MergingthisphysicalworldwiththevirtualworldoftheInternetandsoftwareenablescompaniesandconsumerstocreateandenjoynewservicesthatarefoundedonWeb-basedbusinessmodels.Thiswillhaveabigimpactonthewaywedobusiness."ManufacturingalreadygeneratesmoredatathananyothersectorPetabytesConstructionConsumerandRecreationalServicesResourceIndustriesUtilitiesWholesaleTransportationInsuranceEducationHealthcareSecuritiesandInvestmentServicesManufacturingGovernmentBankingCommunicationsandMediaRetailProfessionalServicesSOURCE:IDC;McKinseyGlobalInstituteanalysis1Discretemanufacturingconstitutes1072petabytes;Processmanufacturing740petabytesAnnualnewdatastoredbysector,2010Industry4.0isoftencalledthe4thIndustrialRevolutiondramaticallyshapingIndustryandourwaystoproduceSOURCE:StatistischesBundesamt;DeutscheBundesbank;Prognos;ThomasNipperdey;McKinsey1strevolution
2ndrevolution
4threvolution
3rd
revolution
Industry4.0isoftencalledthe4thIndustrialRevolutiondramaticallyshapingIndustryandourwaystoproduceSOURCE:StatistischesBundesamt;DeutscheBundesbank;Prognos;ThomasNipperdey;McKinsey1strevolution
(Water/Steam)2ndrevolution(Electricity)4threvolution
(Cyberphysicalsystems)Percent
ofinstalledbase100~10-20~30-50~80-90ReplacementofequipmentReplacement
ofcompleteloomnecessaryLittlereplacement,
astoolingequipmentcouldbekept,onlyconveyorbeltneededExistingmachineswillbeconnected,onlypartialreplacementofequipmentHighlevelofreplace-mentastoolingequipmentwasreplacedbymachines3rd
revolution
(Automation)From……to…Industry4.0isstillsomewhathypedinthemedia,long-termimplicationsandimpactstillnotfullyappreciatedSOURCE:McKinseyIndustry4.0GlobalExpertSurvey2015,1GoogleTrendsgivesestimateaboutsearchtrends(numberofqueriesforkeyword)/(totalgooglesearchqueries)8030701005040206010900201120132015GoogleTrendsgraphfor“Industrie4.0”inGermany1
RelativepercentageInterestonIndustry4.0asatopicisincreasedoverlastyearsShareof"Industrie4.0"(I4.0)queriesrelatedtototalsearchqueriessteadilyincreasingLong-termpotentialandimplicationsofI4.0effortsonplantsstillunder-appreciated2012201420172016Industry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyDisruptive
technologiesTransformintoadigitalcompanyReach
nexthorizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue
poolsDisruptive
technologiesTransformintoadigitalcompanyReach
nexthorizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue
poolsIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyIndustry4.0:Disruptivetechnologiesthatwillchangethemanufacturingsectorbetweentodayand2025Industry4.0Analyticsand
intelligenceConversiontophysicalworldData,computationalpowerandconnectivityHumanmachineinteractionBigdata/opendataInternetofThings/Machine-tomachineCloudtechnologyTouchinterfacesandnext-levelgraphicaluserinterfacesVirtualandaugmentedrealityDigitizationandautomationofknowledgeworkAdvancedanalyticsAdditivemanufacturing
(i.e.,3DPrinting)Advancedrobotics(e.g.,human-robotcollaboration)EnergystorageandharvestingDISRUPTIVETECHNOLOGIESSOURCE:McKinseyTechnologicallimitationshavefinallybeenovercome–nowisthetimeforIndustry4.0LPWA1technologiesprovidewirelessinfrastructuretoconnectthousandsofIoTnodesPricesforIoThardwareexpectedtobeaslowasUSD1perIoTnodeinthenearfutureConnectivityAffordabilityInteroperability1Lowpowerwidearea
2Machine-to-machineCommunicationprotocolsespeciallydesignedforseam-lessM2M2inter-
actionhavebeendevelopedSOURCE:McKinseyDISRUPTIVETECHNOLOGIES1mbps10kbps1gbps100kbps100mbps10mbps100km1kbps100bps1km10km100m10mDatarate,logscale
Range,logscale
Nowisthetime–newwirelesstechnologiesprovideLPWAinfrastructure(802.11n)1IPv6overLowpowerWirelessPersonalAreaNetworksCurrentwirelessconnectivitytechnologiesCurrentlyavailableconnectivitystandardsrepresentatrade-
offbetweenrangeandtrans-missionrateManystandardsforlow-rangeconnectivityavailable;someopenstandardslike6LoWPAN1
makingafurthersteptowardsconnectingdevicesacrossdifferentnetworktypes(e.g.,integratingWi-Ficlientswith802.15.4-baseddevices)Justrecently,newtechnolo-gieswithultra-widerangesandlowdatarateshavebeenintroduced–thesetechnologiesareveryenergy-efficient
(IoTnodescanlastforyearswiththesamebatterypack)Keyinsightsandlearnings231123802.15.4SOURCE:McKinseyDISRUPTIVETECHNOLOGIESIndustry4.0quiz
Yourturn–1voteperquestion1GBstoragecostsonaverageUSD0.03.
Whatusedtobethepricein1992?YourvoteUSD1,000USD5,000USD10,000USD20,0001234DISRUPTIVETECHNOLOGIESSOURCE:McKinseySignificantdecreaseofcostfordatastorage,
computationandtransmissionSOURCE:DeloitteUniversityPress,,/users/hpm/book97/ch3/processor.list.txt,/internet-of-things-hardware,/product/CC3100/description;McKinseyStorageComputationConnection$perGB$per1milliontransistors$permbps10,000.001.0010.001,000.00100.000.100.012015101992200010,000.01,000.0100.010.01.00.120151020001.0000.1000.0100.0011,000.000100.00010.00020151020001992$222
$0.01$10,000
$0.03$1,200
$0.63DISRUPTIVETECHNOLOGIESCostofInternetofThingsnodeshascomedowndramatically,andisexpectedtofallstillfurtherOther4
~1.01.0-2.0-50%Sensor3
2020E52015MCU1
Connectivity2~1.02.5-4.00.3-1.00.1-0.8Unitprice,USDNosignificantcostsassociatedwithInternetofThingsconnectivityanymorePricesexpectedtocontinuetofalloverthenextfewyearsAdditionalcostsavingpotentialfromfutureintegrateddesignsolutionsCalculationdoesnotincludefixedcostssuchascostsforinfrastructure1CurrentpricesrangefromUSD0.3(e.g.,Cypress32-bit)toUSD1.2(e.g.,TI16-bit)dependentonspeed,quality,andintegratedmemorysize(rangesforlargerordervolumes)2Combinationoffiltertransceiverandantenna–additionalcostsforswitchesandamplifiersnotincluded3Forexample,temperature,position,pressure,gyroscope...4AdditionalcomponentslikeADCconverters,power-managementconverters,capacitors,resistor,fuse,PCB(listnotexhaustive)52020pricesestimatedbyinflatingcurrentpriceswithaCAGRof-15%p.a.SOURCE:;expertopinionDISRUPTIVETECHNOLOGIESArtificialintelligencesystemsalreadyautomate
tasks
thatusedtorequirehighlytrainedexpertsIBMWatson,
oncologyadvisorAragoAutopilotfor
ITservicemanagementSeveralUShospitalsuseWatsontoderiverecommendationsforindividualizedtreatmentplansforcancerpatientsSystemhasbeen"trained"withmillionsofmedicalresearcharticles,clinicaltrialreports,patienthistories,andfeedbackonproposedsolutionsfromspecialistdoctorsGoalistousesystemtobringleading-edgecancertherapiestocommunitysettingswithlimitedaccesstohigh-qualitymedicalcareSystemautomatesITservicemanage-ment(e.g.,ITILincident,problem,changemanagement)Algorithmsdonotexecutestaticscriptsbutdynamicallycombine"knowledgemodules"tohandlenewsituationsandlearnfromtheoutcomesSoftwareenablesaverageautomationratesof~90%leadingtoaverage
costreductionsof~30%(externalassessmentbyGartner)aswellasperformanceimprovementsSOURCE:McKinseyDISRUPTIVETECHNOLOGIESNewformsofhumanmachineinteractioncanfurther
optimizeproductionprocessesSOURCE:Festo;Microsoft;UbimaxDescriptionPossibleIndustry4.0applicationExoskeletonsFestoExoHandExoskeletonemulatesphysiologyofhumanhandCansupportstrainingmanualmovements(wornasglove)andtransmithumanhandmovementstorobothandAccelerationofprocessesthatrequirestrainingmanualworkbyenablingworkerstodothemfasterandmoreoftenEnablingofremotehandlingofdangerousgoodsGesturerecognitionMicrosoftKinectInputdeviceforWindowsPCsenablesgesture,facial,andvoicerecognitionDocumentationofcomponentqualityflawsbypointingatanon-screen3-DrepresentationAugmentedrealityUbimaxappsonGoogleGlassApplicationsonGoogleGlassshowlocation-basedinstructionstoworkers(e.g.,directionswheretogo,howtocompleteatask)Moreefficientwarehouse/assembly/serviceprocessesVirtualtrainingofworkersRemoteassistancewithplantmaintenanceDISRUPTIVETECHNOLOGIES3Dprintingnowadaysnotonlypossibleforpolymers
andmetals,butalsoceramicsSOURCE:3,3DISRUPTIVETECHNOLOGIESCERAMICSEXAMPLESSignificanttechnologicaladvancesin3Dprintingalreadyachievedwithinthelast25yearsSOURCE:WohlersReport;McKinseyResearch;McKinsey1Overallcostsincludingenergyandfacilities,maintenance,labor,machine,andmaterials 2ExemplarycalculationforDMLStechnology 3BasedonSLSSinterstation2000for1990and3DSsPro230HSfor2014;however,highdependenceonexactpartthatisbeingprinted41988and2012datapointsforIndustrialAMprintersMaterialsTypeMaximumsize3m3Laserpower3WattSoldindustrialprinters4Numberp.a.Manufacturersof3Dprinters4Number3Dprinting1EURperpart2Maximumspeed3cm3perhr1990sToday(2014)Polymers
andmetalsAdditionally,glass,biocells,sugar,cement~0.03~0.23~50~200~30~9,800<5~40~12.0~5.0~1,600~4,900>+1,000%+300%>+1,000%>+1,000%-60%+200%DISRUPTIVETECHNOLOGIESFirstHRCapplicationshavebeensuccessfully
introducedatautomotiveOEMsSOURCE:McKinsey,companyhomepageAudi,Ingolstadt1
Pickingandhandoverofcoolantexpansionreservoirfromlarge-loadcarrierAssemblyandinstallationcoolantexpansionreservoirbyoperator(handlingofodd-shapedpartsstillrequired)ImprovedergonomicsandreducedlevelsofworkerfatigueApplicationhassuccessfullygonethroughcertificationfromtheOEMsliabilityinsuranceRobotsupportsoperatorindoorassemblylineRobothandlespositioningandpressingofdoorsealswhichrequiresprecision,highforceandconstantpressureUpto70%offloorspacesavingsiminassembly-nearareasbyavoidingperiphericsafetyshieldsandbarriersBMW,Spartanburg21Finalassembly,AudiIngolstadtplant2Doorassemblyline,BMW,SpartanburgplantDISRUPTIVETECHNOLOGIESPaceofchangewillbeslowercomparedtotheconsumerInternetduetolargedownsiderisksincaseoffailure…SOURCE:Pressclippings1http:///companystory/downtime-costs-auto-industry-22k-minute-survey-4810172
http://www.vdi.de/artikel/gute-perspektiven-fuer-standort-deutschland-durch-industrie-40;onlytheofficiallyreportedcases–realdamageisexpectedtobebigger3http:///2014/12/31/business/a-year-of-record-recalls-galvanizes-auto-industry-into-action.html?_r=2CybersecurityriskEUR50bnAnnualdamage
totheGermanmanufacturingindustrycaused
bycyberattacks2Numberofcarsthatwererecalledin2014throughouttheUS3
60mQualitylossriskCostsintheautomotiveindustryperday1–weighrisksofintroductionofnewtechnologyagainstprocessreliabilityProductiondowntimeriskEUR28mDISRUPTIVETECHNOLOGIES<1,89,56,0<12,015,0…andduetosignificantlylongerinvestmentcyclesAverageusageperioduntilreplacement,yearsSOURCE:ReconAnalytics;Siemens;USInternalRevenueServiceManufacturingequipmentSteelAutomotiveChemicalsElectronicsSmartphoneDISRUPTIVETECHNOLOGIESIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessOPERATIONALEFFECTIVENESSSOURCE:McKinseyTransformintoadigitalcompanyAdaptbusinessmodelstocaptureshiftingvalue
poolsReachnext
horizonofoperationaleffectivenessDisruptive
technologiesFromabaseof30,000datatags,closetozerotagsareusedtoinformoperationaldecisionsInacaseexample,99%ofalldatafromanoilrigwaslostbeforereachingoperationaldecisionmakers~30,000tagsmeasuredCommentPeopleandprocessesSchedulepredominantlybasedonOEM-recommendedmaintenanceintervalsDatamanagementDatacannotbeaccessedinrealtime,enablingonlyadhocanalysisInfrastructureOnly~1%canbestreamedonshorefordaytodayuseData
capture~40%ofalldataisneverstored–remainderisstoredlocallyoffshoreDeploymentNointerfaceinplacetoenablerealtimeanalyticsto"reach"offshoreAnalyticsReportinglimitedtoafewKPIswhicharemonitoredinretrospect0%~1%60%100%<1%<1%SOURCE:McKinseyOPERATIONALEFFECTIVENESSILLUSTRATIVESOURCE:McKinseyBeforeIndustry4.0OPERATIONALEFFECTIVENESSManualcheckingofbearing;replaceevery30daysregardlessofconditionWiredcommunicationwithcontrolcenterExactyieldpercoilunknownIdentifieddefectcreatedbyPaperMachineincardboardhastobescrapedIndividualcontrolroomforspecificmachine;novisibilitytoup/downstreamprocessesExcessiveWIP;notrackingsystemmakesiteasierforcoilstogetlostSignificantexcesslabormanagingunoptimizedflowpathandhardtolocateinventoryUnoptimizedpreventivemaintenanceschedulewithallpartschangedonsettimesILLUSTRATIVEBeforeIndustry4.0SOURCE:McKinseyOPERATIONALEFFECTIVENESSAfterIndustry4.0transformationSOURCE:McKinseyILLUSTRATIVEOPERATIONALEFFECTIVENESSAGVsimproveslaborefficiencyandprocessingtimeformaterialhandlingReducemachinedowntimeControlsmanymachinesMonitorsqualityandcomponentperformanceinadditiontothroughputUsesadvancedanalyticstoupdateparametersinrealtimetoimprovequalityandyieldPiezoElectricSensormeasuringvibrationonbearing;onlyreplacedifconditionrequiresImproveyieldImprovequalityIncreaselaborefficiencyCommonoperatingpictureBatchmatchingtodemandPreventiveMaintenanceSpectrometerQualityissuesidentifiedinrealtimewithdatarelayedtocontrolroomforadvancedanalyticsandparameteradjustmentYieldinputandoutputdatarelayedtocontrolroomforadvancedanalyticsandparameteradjustmentRFIDtagsoncoilsallowpreciselocationandtriggerautomaticKanbanwhenstockisdepletedWirelesscommunicationwithcontrolcenterOptimizedpreventivemaintenanceschedulebasedonrealtimecomponentmonitoringDigitizeperformancemanagementthroughrealtimedataandalarmsCommonoperatingpictureIncreaselaborefficiencyAfterIndustry4.0transformationILLUSTRATIVESOURCE:McKinseyOPERATIONALEFFECTIVENESSSOURCE:I,Steuler-ab.de(picture)Real-timeprocessadaptation:Productivityincreasethroughlimekilnmid-zonetemperaturemonitoring/adjustmentbasedonsophisticateddataanalyticsSensing–sensorsinakiln’smid-zonemonitorlimemudtemperature,aleadingindicationofcalcinationDataaggregation&analysis–temperaturereadingsarecombinedtosimulatetheheatprofileofthekilnDecisionmaking&actuation-basedontheinferredheatprofile,theshapeandintensityoftheflamedrivingheatthroughthekilnisoptimizedPULP&PAPERINDUSTRYImpact: 6%fuelsavings
16%limethroughputincreaseOPERATIONALEFFECTIVENESSBoschusesSICK'sRFIDtechnologytoenableautonomoustransportsystemsSOURCE:SICKinsightmagazine,July2014;
McKinsey1Radio-frequencyidentification 2MethodtomanageproductionprocesscontrolStartingpointRFIDsystemintroducedImprovementsAlldataregardinggoodsflowscollectedmanuallybyfillingoutpapercardsandenteringinforma-tionintoITsystemApproachhighlyerror-proneandasynchronous–informationflowlaggingbehindphysicalgoodsflowGoodsandtransportcontainersallequippedwithRFID1
trans-pondersthatcanbetrackedinrealtimeviaRFIDkanban2
systemIndividualobjectscanbeunambiguouslyidentifiedWheneveraunitisremovedfromthewarehouse,theRFIDsystemautomaticallytransfersinformationtotheSAPsystemAssoonasminimuminventorylevelisreached,pullsignalistriggeredtorefillstockAvailabilityofdataenablesinteractionwithcustomersandsuppliersforend-to-endprocessoptimizationImpact"Theproductionprocessisimprovingallonitsown.Newdataleadstonewknowledge.Newknowledgeleadstoimprovementsinthesystem."(Boschprojectmanager)OPERATIONALEFFECTIVENESSCondition-basedmaintenance:Decisionsupportcentertomonitorandidentifyearlywarningsonrotatingequipmenton~200platforms100%0%EquipmentconditionEquip-
mentlife
EventsandminordamagePotentialFailure
damagethatneedsrepairOperationsrunningwithoutproblemsAlert,e.g.fromvibrationorbearingtemp.FunctionalFailureInputfromequipmentPredictiveanalyticsEngineeringanalysisReportandrecom-mendationsTool1Tool2Tool3PatternrecognitionTagsfromcurrentmachinerycanbeusedtotellanomaliesPatternrecognitionisdoneagnostictovendorAnalytictoolsareusedtoidentifyrootcausestoanomaliesRecommen-dationsIncreasedmaintenanceplanningandrepairtimeMachinerytags(speed,current,etc.)VibrationsensorsSOURCE:McKinseyOPERATIONALEFFECTIVENESSEnablesworkers
tolocateproductsfasterandmoreprecisely,scansproductsautomaticallyGivesworkersexactinstructionshowandwheretostackproductsforpalletbuildingoptimizationKnapp'sKiSoftVisionguideswarehouseworkerswithvisualpromptsHelpsworkersoptimizecubestackingandensuresecurelocationsforfragileitemsSOURCE:;McKinseyKnappAGhasdevelopedaugmentedrealityglasses
toincreasetheefficiencyofwarehouseworkersOPERATIONALEFFECTIVENESSThewarehouseof2020willbehighlyautomatedSwarmAGVrobotsprovidingefficientgoods-to-manFlexiblemanagementofnumberofshelfsRandomlocationstrategyAdvancedsortingsystemwithopticalrecognitionofproductsPickingrobotforsingleitempickingAssistedmanualpickingsystem,e.g.man-to-goodsviaSwarmAGVs,smartglasses,…AGVconnectingconveyorbeltwithpickingareaHighspeed,highcapacitymulti-shuttlesystemShuttleabletoleaverackandoperateasAGVWMSautonomouslymanageinventory,real-timeconnectiontoorderingsystemAnalyticstoolsincreasingperformanceOPERATIONALEFFECTIVENESSSOURCE:McKinseyAmazonDistributioncenterPostalhub(e.g.DHL)CustomerAddressinformationOrderDeliver‘untagged’tohubFilloutpartialstreetaddressesorzipcodestogetitemsclosertowherecustomersneedthem,andlatercompletethelabelintransitAmazonplanstoshipbasedonpreviousorders/otherfactors.ParcelswaitathubsorontrucksuntilanorderarrivesAmazonmightsuggestitemsalreadyintransittocustomersusingitswebsitetoensuretheyaredeliveredAmazon’salgorithmsmightcauseerrors,promptingcostlyreturns.Tominimizethosecosts,Amazonsaiditmightconsidergivingcustomersdiscounts,orconverttheunwanteddeliveryintoafreegiftPredictiveShippingPatentShopping-cartcontentsReturnsTimeofcursorhoveringPreviousordersProductsearchesWishlistsSourcesofPredictionsTendertocommoncarrieratfulfillmentcenterSOURCE:McKinseyCustomerExperiencePractice,A,BBC,WSJCan’tweleveragetheinformationtoshipBEFOREthe
customerhasordered?Amazon's“predictiveshipping”doesitOPERATIONALEFFECTIVENESSIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyNEWBUSINESSMODELSDisruptive
technologiesTransformintoadigitalcompanyReachnext
horizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue
poolsThereare4maintrendsregardingnewbusinessmodelsthatexploitopportunitiesSOURCE:McKinsey1 Intellectualpropertyrights
PlatformsProvisioningofTechnologyplatforms:ecosystemsfordevelopersbasedonopensystemsBrokerplatforms:industrialspotmarketsthatconnectthirdparties(e.g.,forexcessproductioncapacity)Data-drivenbusinessmodelsUsageof(crowd-sourced)dataforDirectmonetizationofcollecteddatainsteadofprimaryproduct(e.g.,Google)Indirectmonetizationofinsightsfromcollecteddata
(e.g.,micro-segmentationforpricingorcustomization)Pay-by-usage/subscription-basedmodels
formachineryNewpaymentmodelstransformCapex
intoOpexformanufacturersPerpetuationofrevenuestreamsinsteadofone-offassetsaleforsuppliersAs-a-servicebusinessmodelsIPR1-basedbusinessmodelsIPR-basedservicesRecurringrevenuemodels(e.g.,licensingfeesfordatastandards)Add-onservicesforprimaryproducts(e.g.,consultingonbestusageofproducts)NEWBUSINESSMODELSExampleJohnDeere:frommanufacturingtractorstoofferingsophisticatedonlineservicesforfarmersJohnDeere:theymaketractors,right?NowusesensorsaddedtotheirlatestequipmenttohelpfarmersmanagetheirfleetandtodecreasedowntimeoftheirtractorsaswellassaveonfuelTheinformationiscombinedwithhistoricalandreal-timedataregardingweatherprediction,soilconditions,cropfeaturesandmanyotherdatasetsTheinformationispresentedintheMyJohnDplatformaswellasontheiPadandiPhoneappMobileFarmManagerinordertohelperfarmersfigureoutwhichcropstoplantwhereandwhen,whenandwheretoplough,wherethebestreturnwillbemadewiththecropsandevenwhichpathtofollowwhenploughingSOURCE:JohnDeerestatements;DataFloqNEWBUSINESSMODELS–IPR-BASEDBUSINESSMODELSSOURCE:Rolls-Royceannualreports;Rolls-R;McKinseyRolls-Royceoffersfullafter-salesservice
modelbasedonpredictivemaintenanceNEWBUSINESSMODELS–PAYBYUSAGERatherthansellingturbinestocustomers,Rolls-Roycenowrentsthemoutona"timeonwing"basisaspartoftheirTotalCareofferingBefore:servicerepairsduringenginedowntimemeantrevenuesforOEMNow:
OEMtoensureengineavailability,customerspayforuptimeonly–allrisksassociatedwithengineaftercarestaywithOEMHow:newbusinessmodelenabledbyadvancedbigdatacapabilitiessinceRolls-Roycecanaccuratelypredictenginefailuresseveraldaysbeforetheyoccur(predictivemaintenance)Result:
improvedsafety,improvedcustomerservice,andlowerservicecostsImpactRolls-RoyceexpectstheshareofLTSAs1,includingTotalCare,torisefrom73%oftheirinstalledfleetin2012toover90%overthenextdecade1 LongTermServiceAgreementDetails–SCIO,acrowd-sourcedapproach
tospectroscopySOURCE:McKinseyNEWBUSINESSMODELS–DATADRIVENTypicalspectrometerScientificapplication–mainlyusedinphysicsandchemistryapplicationsIsoftenthesizeofalaptopTypicallypricedatUSD10,000andaboveConsumerapplication–afterscanninganobject,theuserre
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高校教师职业道德全真模拟考试试卷A卷含答案
- 2024年xx村年度脱贫户、监测户增收工作总结
- 牛津译林版英语高三上学期期末试题及答案指导
- 机电工程师招聘面试题与参考回答(某大型国企)
- 新修订《疫苗流通和预防接种管理条例》培训试题及答案
- 2024年简化货品采购协议格式
- 2024年限定区域分销商协议条款
- 2024年度工程领域劳务协议范本
- 2024年新汽车租赁经营协议样本
- 2024全新保健品商业合作协议样本
- 山东省济南市历下区2023-2024学年八年级上学期期中语文试题
- 图神经网络在生物医学影像分析中的应用
- 浅谈管理者的自我管理
- 第一章 结构及其设计 课件-2023-2024学年高中通用技术苏教版(2019)必修《技术与设计2》
- 语文教学常规检查表
- “思政”课社会实践
- 临时用电漏电保护器运行检测记录表
- 复杂性尿路感染
- 重度残疾儿童送教上门
- 膀胱癌综合治疗新进展
- 音乐ppt课件《小小的船》
评论
0/150
提交评论