版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切 B.相交 C.相切或相离 D.相切或相交2.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)23.附城二中到联安镇为5公里,某同学骑车到达,那么时间t与速度(平均速度)v之间的函数关系式是()A.v=5t B.v=t+5 C.v= D.v=4.如图,△ABC中,∠ACB=90°,∠A=30°,将△ABC绕C点按逆时针方向旋转角(0°<<90°)得到△DEC,设CD交AB于点F,连接AD,当旋转角度数为________,△ADF是等腰三角形.A.20° B.40° C.10° D.20°或40°5.已知⊙O的半径是4,圆心O到直线l的距离d=1.则直线l与⊙O的位置关系是()A.相离 B.相切 C.相交 D.无法判断6.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣67.如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上的一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则下列结论中:①;②;③tan∠EAF=;④正确的是()A.①②③ B.①②④ C.①③④ D.②③④8.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为()A.978×103 B.97.8×104 C.9.78×105 D.0.978×1069.二次函数与的图象与x轴有交点,则k的取值范围是A. B.且 C. D.且10.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=2,CD=1,则△ABC的边长为()A.3 B.4 C.5 D.611.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为()A. B. C. D.12.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,矩形中,,,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_________.14.已知线段c是线段、的比例中项,且,,则线段c的长度为______.15.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是_______cm.16.如图,为的直径,弦于点,已知,,则的半径为______.17.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为_____.18.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.三、解答题(共78分)19.(8分)已知:如图,B,C,D三点在上,,PA是钝角△ABC的高线,PA的延长线与线段CD交于点E.(1)请在图中找出一个与∠CAP相等的角,这个角是;(2)用等式表示线段AC,EC,ED之间的数量关系,并证明.20.(8分)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD(2)求证:DE为⊙O的切线21.(8分)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y(万件)与销售单价x(元)之间的函数关系如下表格所示:销售单价x(元)…25303540…每月销售量y(万件)…50403020…(1)求每月的利润W(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?22.(10分)如图,在中,,为边上的中线,于点E.(1)求证:;(2)若,,求线段的长.23.(10分)已知:点D是△ABC中AC的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F.(1)求证:△GAE∽△GBF;(2)求证:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的长.24.(10分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.25.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A非常了解”“B了解”“C基本了解”三个等级,并根据调查结果制作了如下图所示两幅不完整的统计图.(1)这次调查的市民人数为,,;(2)补全条形统计图;(3)若该市约有市民1000000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A非常了解”的程度.26.(1)已知:如图1,为等边三角形,点为边上的一动点(点不与、重合),以为边作等边,连接.求证:①,②;(2)如图2,在中,,,点为上的一动点(点不与、重合),以为边作等腰,(顶点、、按逆时针方向排列),连接,类比题(1),请你猜想:①的度数;②线段、、之间的关系,并说明理由;(3)如图3,在(2)的条件下,若点在的延长线上运动,以为边作等腰,(顶点、、按逆时针方向排列),连接.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结,若,,直接写出的长.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题解析“因为垂线段最短,所以圆心到直线的距离小于等于1.此时和半径1的大小不确定,则直线和圆相交、相切都有可能.故选D.点睛:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.2、C【解析】依据一元二次方程的定义解答即可.【详解】A.x20是分式方程,故错误;B.y2﹣3x+2=0是二元二次方程,故错误;C.x2=5x是一元二次方程,故正确;D.x2﹣4=(x+1)2是一元一次方程,故错误.故选:C.【点睛】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解答本题的关键.3、C【分析】根据速度=路程÷时间即可写出时间t与速度(平均速度)v之间的函数关系式.【详解】∵速度=路程÷时间,∴v=.故选C.【点睛】此题主要考查反比例函数的定义,解题的关键是熟知速度路程的公式.4、D【分析】根据旋转的性质可得AC=CD,根据等腰三角形的两底角相等求出∠ADF=∠DAC,再表示出∠DAF,根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三种情况讨论求解.【详解】∵△ABC绕C点逆时针方向旋转得到△DEC,∴AC=CD,∴∠ADF=∠DAC=(180°-α),∴∠DAF=∠DAC-∠BAC=(180°-α)-30°,根据三角形的外角性质,∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三种情况讨论,①∠ADF=∠DAF时,(180°-α)=(180°-α)-30°,无解,②∠ADF=∠AFD时,(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD时,(180°-α)-30°=30°+α,解得α=20°,综上所述,旋转角α度数为20°或40°.故选:D.【点睛】本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论.5、A【解析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=1,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..6、D【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解:0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.故选D.7、A【解析】利用正方形的性质,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再证明△ABM∽△FDM,即可解答①;根据题意可知:AF=DE=AE=,再根据三角函数即可得出③;作PH⊥AN于H.利用平行线的性质求出AH=,即可解答②;利用相似三角形的判定定理,即可解答④【详解】解:∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴,∴S△ABM=4S△FDM;故①正确;根据题意可知:AF=DE=AE=,∵×AD×DF=×AF×DN,∴DN=,∴EN=,AN=,∴tan∠EAF=,故③正确,作PH⊥AN于H.∵BE∥AD,∴,∴PA=,∵PH∥EN,∴,∴AH=,∴PH=∴PN=,故②正确,∵PN≠DN,∴∠DPN≠∠PDE,∴△PMN与△DPE不相似,故④错误.故选:A.【点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质8、C【详解】解:978000用科学记数法表示为:9.78×105,故选C.【点睛】本题考查科学记数法—表示较大的数.9、D【解析】利用△=b2-4ac≥1,且二次项系数不等于1求出k的取值范围.【详解】∵二次函数与y=kx2-8x+8的图象与x轴有交点,∴△=b2-4ac=64-32k≥1,k≠1,解得:k≤2且k≠1.故选D.【点睛】此题主要考查了抛物线与x轴的交点,熟练掌握一元二次方程根的判别式与根的关系是解题关键.10、B【分析】根据等边三角形性质求出AB=BC=AC,∠B=∠C=60°,推出∠BAP=∠DPC,即可证得△ABP∽△PCD,据此解答即可,.【详解】∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△ABP∽△PCD;∴∵BP=2,CD=1,∴∴AB=1,∴△ABC的边长为1.故选:B.【点睛】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△ABP∽△PCD,主要考查了学生的推理能力和计算能力.11、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.12、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.二、填空题(每题4分,共24分)13、【分析】阴影部分的面积为扇形BDM的面积加上扇形CDN的面积再减去直角三角形BCD的面积即可.【详解】解:∵,∴根据矩形的性质可得出,∵∴∴利用勾股定理可得出,因此,可得出故答案为:.【点睛】本题考查的知识点是求不规则图形的面积,熟记扇形的面积公式是解此题的关键.14、6【解析】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故答案为6.15、25【详解】解:∵圆锥的底面周长是4π,则4π=nπ×4180∴n=180°即圆锥侧面展开图的圆心角是180°,∴在圆锥侧面展开图中AD=2,AB=4,∠BAD=90°,∴在圆锥侧面展开图中BD=20=2∴这只蚂蚁爬行的最短距离是25cm.故答案为:25.16、1【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,
∵CD⊥AB于点E,∴DE=CE=CD=×8=4,∠OED=90°,
由勾股定理得:OD=,即⊙O的半径为1.
故答案为:1.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.17、2【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴2,∴AF=2GF=4,∴AG=1.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=2.故答案为:2.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.18、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】∵,.∴∴∵和的面积分别为和∴∵和等高∴∴同理可得∴阴影部分的面积为故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.三、解答题(共78分)19、(1)∠BAP;(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.证明见解析.【分析】(1)根据等腰三角形∆ABC三线合一解答即可;(2)连接EB,由PA是△CAB的垂直平分线,得到EC=EB.,∠ECP=∠EBP,∠ECA=∠EBA.然后推出∠BAD=∠BED=90°,利用勾股定理可得EB2+ED2=BD2,找到BD2=2AB2,代入可求的EC2+ED2=2AC2的等量关系即可.【详解】(1)∵等腰三角形∆ABC且PA是钝角△ABC的高线∴PA是∠CAB的角平分线∴∠CAP=∠BAP(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.证明:连接EB,与AD交于点F∵点B,C两点在⊙A上,∴AC=AB,∴∠ACP=∠ABP.∵PA是钝角△ABC的高线,∴PA是△CAB的垂直平分线.∵PA的延长线与线段CD交于点E,∴EC=EB.∴∠ECP=∠EBP.∴∠ECP—∠ACP=∠EBP—∠ABP.即∠ECA=∠EBA.∵AC=AD,∴∠ECA=∠EDA∴∠EBA=∠EDA∵∠AFB=∠EFD,∠BCD=45°,∴∠AFB+∠EBA=∠EFD+∠EDA=90°即∠BAD=∠BED=90°∴EB2+ED2=BD2.∵BD2=AB2+AD2,∴BD2=2AB2,∴EB2+ED2=2AB2,∴EC2+ED2=2AC2【点睛】本题考查了圆的性质、等腰三角形的性质以及勾股定理,这是一个综合题,注意数形结合.20、(1)证明见解析;(2)证明见解析.【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为⊙O的切线,只要证明∠ODE=90°即可.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE,∴DE是⊙O的切线.考点:切线的判定.21、(1);(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【分析】(1)先根据表格求出y与x之间的函数关系式,再根据“利润(单价单件成本)销售量”即可得;(2)令代入(1)的结论求出x的值即可得;(3)先根据“制造成本不超过480万元”求出y的取值范围,从而可得x的取值范围,再利用二次函数的性质求解即可得.【详解】(1)由表格可知,y与x之间的函数关系是一次函数,设y与x之间的函数关系式为,将和代入得:,解得,则y与x之间的函数关系式为,因此,,即;(2)由题意得:,整理得:,解得或,答:当销售单价为26元或40元时,厂商每月获得的总利润为480万元;(3)由题意得:,则,解得,将二次函数化成顶点式为,由二次函数的性质可知,在范围内,随x的增大而减小,则当时,取得最大值,最大值为(万元),答:当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【点睛】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、解一元二次方程、解一元一次不等式组等知识点,较难的是题(3),熟练掌握二次函数的性质是解题关键.22、(1)见解析;(2).【分析】对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【详解】解:(1)证明:∵,∴.又∵为边上的中线,∴.∵,∴,∴.(2)∵,∴.在中,根据勾股定理,得.由(1)得,∴,即,∴.【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.23、(1)详见解析;(2)详见解析;(3)AE=1【分析】(1)由AE∥BC可直接判定结论;(2)先证△ADE≌△CDF,即可推出结论;(3)由△GAE∽△GBF,可用相似三角形的性质求出结果.【详解】(1)∵AE∥BC,∴△GAE∽△GBF;(2)∵AE∥BC,∴∠E=∠F,∠EAD=∠FCD,又∵点D是AC的中点,∴AD=CD,∴△ADE≌△CDF(AAS),∴AE=CF;(3)∵△GAE∽△GBF,∴,又∵AE=CF,∴3,即3,∴AE=1.【点睛】本题考查了相似三角形的判定与性质等,解答本题的关键是灵活运用相似三角形的性质.24、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;
(2)①首先证明△AEB≌△AFC,由相似三角形的性质可得:∠EBA=∠FCA,进而可证明△AGC∽△KGB;②根据题意,可分类讨论求值即可.【详解】(1)∵AB=AC,AO⊥BC,
∴∠OAC=∠OAB=45°,
∴∠EAB=∠EAF-∠BAF=45°,
∴∠EAB=∠BAF=45°,
在△EAB和△FAB中,,∴△EAB≌△FAB(SAS),
∴BE=BF;
(2)①∵∠BAC=90°,∠EAF=90°,
∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC,
在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),
∴∠EBA=∠FCA,
又∵∠KGB=∠AGC,
∴△AGC∽△KGB;
②当∠EBF=90°时,∵EF=BF,
∴∠FEB=∠EBF=90°(不符合题意),当∠BEF=90°,且EF=BF时,∴∠FEB=∠EBF=90°(不符合题意),当∠EFB=90°,且EF=BF时,如下图,∴∠FEB=∠FBE=45°,∵,,∴∠AFE=∠AEF=45°,∴∠AEB=∠AEF+∠FEB=45°+45°=90°,不妨设,则BF=EF=,BE=,在Rt△ABE中,∠AEB=90°,,BE,∴,∴,综上,.【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的性质,题目的综合性很强,最后一问要注意分类讨论,以防遗漏.25、(1)500,12,32;(2)详见解析;(3)320000【分析】(1)根据B等级的人数及其所占的百分比可求得本次调查的总人数,然后根据C等级的人数可求出其所占的百分比,进而根据各部分所占的百分比之和为1可求出A等级的人数所占的百分比,即可得出m,n的值;
(2)根据(1)中的结果可以求得A等级的人数,从而可以将条形统计图补充完整;
(3)根据A等级的人数所占的百分比,利用样本估计总体即“1000000×A等级人数所占的百分比”可得出结果.【详解】解:(1)本次调查的人数为:280÷56%=500(人),又m%=×100%=12%,∴n%=1-56%-12%=32%.故答案为:500;12;32;
(2)选择A的学生有:500-280-60=160(人),
补全的条形统计图,如图所示:
(3)1000000×32%=320000(人).
答:该市大约有320000人对“社会主义核心价值观”达到“A非常了解”的程度.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,读懂统计图.26、(1)①见解析;②∠DCE=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明见解析;(3)①(1)中的结论还成立,②AE=.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省肇庆市实验中学高一语文第10周限时训练
- JGJ106-建筑基桩检测技术规范
- 2024年松原考客运资格证试题题库软件
- 2024年南昌驾驶员客运从业资格证模拟考试题及答案
- 2024年山南道路运输从业资格证b2
- 2024年德汉翻译服务合同
- 举升机租赁协议2024年
- 2024年西宁客车从业资格证考试试题及答案
- 2024年工业原料代理购销协议书
- 2024年防疫消毒合同范本
- 人教版五年级上册数学《-用字母表示数》说课课件
- 河南省驻马店市西平县2023-2024学年七年级上学期期中地理试题
- 干部人事档案转递单表样
- 灭火器检查记录表
- 《临床试验项目管理》课件
- 267条表情猜成语【动画版】
- 江苏省无锡市滨湖区2022-2023学年七年级上学期期中语文试题【含答案解析】
- 安徽省小餐饮食品安全承诺书
- 六年级上册数学直接得数习题
- 中国成人心理健康测试
- 青岛版小学数学【三位数乘两位数的笔算】教案
评论
0/150
提交评论