版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二课时非线性回归模型及其应用课标要求素养要求1.进一步掌握一元线性回归模型参数的统计意义,会用相关统计软件.2.了解非线性回归模型.3.会通过分析残差和利用R2判断回归模型的拟合效果.通过学习回归模型的应用,提升数学运算及数据分析素养.新知探究在实际问题中,有时两个变量之间的关系并不是线性关系,这就需要运用散点图选择适当的函数模型来拟合观测数据,然后通过适当的变量代换,把非线性问题转化为线性问题,从而确定未知参数,建立相应的线性回归方程.提示不一定;越小越好.1.残差的概念2.刻画回归效果的方式 (1)残差图法
作图时________为残差,________可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.若残差点比较均匀地落在水平的带状区域内,带状区域越窄,则说明拟合效果越好. (2)残差平方和法纵坐标横坐标(3)利用R2刻画回归效果决定系数R2是度量模型拟合效果的一种指标,在线性模型中,它代表解释变量客户预报变量的能力.×√拓展深化[微判断]1.残差平方和越接近0,线性回归模型的拟合效果越好.
(
)2.在画两个变量的散点图时,
响应变量在x轴上,解释变量在y轴上.
(
)
提示在画两个变量的散点图时,
响应变量在y轴上,解释变量在x轴上.3.R2越小,
线性回归模型的拟合效果越好.
(
)
提示
R2越大,
线性回归模型的拟合效果越好.×[微训练]1.在残差分析中,
残差图的纵坐标为__________.
答案残差2.甲、乙、丙、丁四位同学在建立变量x,y的回归模型时,分别选择了4种不同模型,计算可得它们的决定系数R2分别如下表:
甲乙丙丁R20.980.780.500.85哪位同学建立的回归模型拟合效果最好?解R2越大,表示回归模型的拟合效果越好,故甲同学建立的回归模型拟合效果最好.[微训练]1.在残差分析中,
残差图的纵坐标为__________.
答案残差2.甲、乙、丙、丁四位同学在建立变量x,y的回归模型时,分别选择了4种不同模型,计算可得它们的决定系数R2分别如下表:
甲乙丙丁R20.980.780.500.85哪位同学建立的回归模型拟合效果最好?解R2越大,表示回归模型的拟合效果越好,故甲同学建立的回归模型拟合效果最好.[微思考]
在使用经验回归方程进行预测时,需要注意哪些问题?
提示
(1)经验回归方程只适用于所研究的样本的总体;(2)所建立的经验回归方程一般都有时效性;(3)解释变量的取值不能离样本数据的范围太远.一般解释变量的取值在样本数据范围内,经验回归方程的预报效果好,超出这个范围越远,预报的效果越差;(4)不能期望经验回归方程得到的预报值就是响应变量的精确值.题型一线性回归分析【例1】已知某种商品的价格x(单位:元/件)与需求量y(单位:件)之间的关系有如下一组数据:x1416182022y1210753列出残差表:00.3-0.4-0.10.24.62.6-0.4-2.4-4.4规律方法
(1)解答线性回归问题,应通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R2来分析函数模型的拟合效果,在此基础上,借助回归方程对实际问题进行分析.(2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适.【训练1】某地区2011年到2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2011201220132014201520162017年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9(2)利用(1)中的回归方程,分析2011年到2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2020年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为解
(1)由所给数据计算得题型二残差分析与相关指数的应用
【例2】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:x15.025.830.036.644.4y39.442.942.943.149.2(1)以x为解释变量,y为预报变量,作出散点图;(2)求y与x之间的回归方程,对于基本苗数56.7预报有效穗;(3)计算各组残差,并计算残差平方和;(4)求R2,并说明(2)中求出的回归模型的拟合程度.解(1)散点图如下.【训练2】为研究质量x(单位:g)对弹簧长度y(单位:cm)的影响,对不同质量的6个物体进行测量,数据如下表:x51015202530y7.258.128.959.9010.911.8(1)作出散点图并求回归直线方程;(2)求出R2并说明回归模型拟合的程度;(3)进行残差分析.解(1)散点图如图所示.样本点分布在一条直线附近,y与x具有线性相关关系.0.050.005-0.08-0.0450.040.025-2.237-1.367-0.5370.4131.4132.313(3)由残差表中的数值可以看出第3个样本点的残差比较大,需要确认在采集这个数据的时候是否有人为的错误,如果有的话,需要纠正错误,重新建立回归模型;由表中数据可以看出残差点比较均匀地落在宽度不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高,由以上分析可知,弹簧长度与所挂物体的质量成线性关系.题型三非线性回归分析【例3】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?规律方法求非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程.(4)分析拟合效果:通过计算决定系数或画残差图来判断拟合效果.(5)根据相应的变换,写出非线性回归方程.【训练3】下表为收集到的一组数据:x21232527293235y711212466115325解(1)作出散点图如下图,从散点图可以看出x与y不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线y=c1ec2x的周围,其中c1,c2为待定的参数.(2)对y=c1ec2x两边取对数,得lny=lnc1+c2x,令z=lny,则有变换后的样本点应分布在直线z=bx+a(a=lnc1,b=c2)的周围,这样就可以利用线性回归模型来建立y与x之间的非线性回归方程了,数据可以转化为x21232527293235z1.9462.3983.0453.1784.1904.7455.784残差yi7112124661153256.44311.10119.12532.95056.770128.381290.3250.557-0.1011.875-8.9509.23-13.38134.675一、素养落地1.通过本节课的学习,进一步提升数学运算及数据分析素养.2.当根据给定的样本数据得到的散点图并不是分布在一条直线附近时,就不能直接求其回归直线方程了,这时可根据得到的散点图,选择一种拟合得最好的函数,常见的函数有幂函数、指数函数、对数函数等,然后进行变量置换,将问题转化为线性回归分析问题.二、素养训练1.下列两个变量之间的关系不是函数关系的是(
) A.角度和它的余弦值 B.正方形的边长和面积 C.正n边形的边数和内角度数和 D.人的年龄和身高
解析函数关系就是变量之间的一种确定性关系.A,B,C三项中的两个变量之间都是函数关系,可以写出相应的函数表达式,分别为f(θ)=cosθ,g(a)=a2,h(n)=(n-2)π.D选项中的两个变量之间不是函数关系,对于年龄确定的人群,仍可以有不同的身高,故选D.
答案D2.(多选题)关于残差图的描述正确的是(
) A.残差图的横坐标可以是样本编号 B.残差图的横坐标也可以是解释变量或预报变量 C.残差点分布的带状区域的宽度越窄相关指数越小 D.残差点分布的带状区域的宽度越窄残差平方和越小解析残差点分布的带状区域的宽度越窄,说明模型拟合精度越高,则残差平方和越小,此时,R2的值越大,故描述错误的是C.答案ABD3.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x16171819y50344131答案C4.在研究硝酸钠的溶解度时,观察它在不同温度(x)的水中溶解度(y)的结果如下表:温度x010205070溶解度y66.776.085.0112.3128.0由此得到回归直线的斜率是__________.答案0.88095.在一次抽样调查中测得样本的5个样本点,数值如下表:x0.250.5124y1612521根据散点图可知y与x近似地呈反比例函数关系,t4210.50.25y1612521由散点图可以看出y与t呈近似的线性相关关系,列表如下:itiyitiyit1416641622122443155140.5210.2550.2510.250.0625∑7.753694.2521.3125备用工具&资料由散点图可以看出y与t呈近似的线性相关关系,列表如下:itiyitiyit1416641622122443155140.5210.2550.2510.250.0625∑7.753694.2521.31255.在一次抽样调查中测得样本的5个样本点,数值如下表:x0.250.5124y1612521题型一线性回归分析【例1】已知某种商品的价格x(单位:元/件)与需求量y(单位:件)之间的关系有如下一组数据:x1416182022y12107532.刻画回归效果的方式 (1)残差图法
作图时________为残差,________可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.若残差点比较均匀地落在水平的带状区域内,带状区域越窄,则说明拟合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度二人合伙创办教育机构合作协议2篇
- 2025年度个人健身中心会员消费借款合同范本3篇
- 2024版医疗产品购销合同范本
- 二零二五年度个人承包矿产资源承包合同模板3篇
- 2025年度办公楼节能减排改造合同3篇
- 2024年版水利基础设施水渠建设协议模板版B版
- 2024消防与安全生产社会化服务合同
- 二零二五年度加盟店财务结算与税务处理合同3篇
- 2024年电子产品供应合同3篇
- 2024版商务咨询服务协议书范本
- 【7地星球期末】安徽省合肥市包河区智育联盟校2023-2024学年七年级上学期期末地理试题(含解析)
- 期末复习试题(试题)-2024-2025学年五年级上册数学苏教版
- 尊重学术道德遵守学术规范学习通超星期末考试答案章节答案2024年
- 望庐山瀑布李白
- 2006年工资标准及套改对应表
- 中英文对照财务报表-模板
- 医院应急预案汇编-门诊突发事件应急预案
- 市场发展部岗位职责
- 配电线路三跨设计技术原则
- 《金融风险管理》习题集(.3)
- 斜盘式轴向柱塞泵设计说明书
评论
0/150
提交评论