版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁邹城八中学2025届九上数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=6,则阴影部分面积为()A.π B.3π C.6π D.12π2.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为40万元,2017年交易额为48.4万元,设2015年至2017年“双十一”交易额的年平均增长率为,则根据题意可列方程为()A. B.C. D.3.已知,若,则它们的周长之比是()A.4:9 B.16:81C.9:4 D.2:34.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三连个月投放单车数量的月平均增长率为x,则所列方程正确的是()A.1000(1+x)2=440 B.1000(1+x)2=1000C.1000(1+2x)=1000+440 D.1000(1+x)2=1000+4406.若,则()A. B. C. D.7.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣28.下列各点在反比例函数图象上的是()A. B. C. D.9.抛物线y=2x2+3与两坐标轴的公共点个数为()A.0个 B.1个 C.2个 D.3个10.下列说法正确的是()A.若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B.可能性很大的事件在一次试验中必然会发生C.相等的圆心角所对的弧相等是随机事件D.掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等11.在同一坐标系中一次函数和二次函数的图象可能为()A. B. C. D.12.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点.若PB切⊙O于点B,则PB的最小值是()A. B. C.3 D.2二、填空题(每题4分,共24分)13.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.14.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为_____.15.已知二次函数中,函数与自变量的部分对应值如下表:…-2-1012……105212…则当时,的取值范围是______.16.如图,点在函数的图象上,都是等腰直角三角形.斜边都在轴上(是大于或等于2的正整数),点的坐标是______.17.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为▲.18.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若,AE=1,求劣弧BD的长.20.(8分)如图所示,分别切的三边、、于点、、,若,,.(1)求的长;(2)求的半径长.21.(8分)关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.22.(10分)解答下列问题:(1)计算:;(2)解方程:;23.(10分)如图,点是线段上的任意一点(点不与点重合),分别以为边在直线的同侧作等边三角形和等边三角形,与相交于点,与相交于点.(1)求证:;(2)求证:;(3)若的长为12cm,当点在线段上移动时,是否存在这样的一点,使线段的长度最长?若存在,请确定点的位置并求出的长;若不存在,请说明理由.24.(10分)如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.25.(12分)(1)计算:(2)已知,求的值26.如图,正方形ABCD中,AB=,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)若A,E,O三点共线,求CF的长;(2)求△CDF的面积的最小值.
参考答案一、选择题(每题4分,共48分)1、D【解析】根据题意得出△COB是等边三角形,进而得出CD⊥AB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案.【详解】解:连接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO,∴△COB是等边三角形,∵E为OB的中点,∴CD⊥AB,∵CD=6,∴EC=3,∴sin60°×CO=3,解得:CO=6,故阴影部分的面积为:=12π.故选:D.【点睛】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正确得出CO的长是解题关键.2、C【分析】由2015年至2017年“双十一”交易额的年平均增长率为x,根据2015年及2017年该网店“双十一”全天交易额,即可得出关于x的一元二次方程,从而得出结论.【详解】解:由2015年至2017年“双十一”交易额的年平均增长率为x,根据题意得:.故选C.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列一元二次方程是解题的关键.3、A【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,AC:DF=4:9,
∴△ABC与△DEF的相似比为4:9,
∴△ABC与△DEF的周长之比为4:9,
故选:A.【点睛】此题考查相似三角形性质,掌握相似三角形周长的比等于相似比是解题的关键.4、B【解析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、D【分析】根据题意可以列出相应的一元二次方程,从而可以解答本题得出选项.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:D.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,是关于增长率的问题.6、B【解析】根据合并性质解答即可,对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.【详解】,,,故选:.【点睛】本题考查了比例的性质,熟练掌握合比性质是解答本题的关键.合比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比.7、D【解析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,故选D.【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.8、B【分析】将每个选项中点的横坐标代入反比例函数解析式中,看函数值是否一致,如果一致,说明点在函数图象上,反之则不在.【详解】A选项中,当时,故该选项错误;B选项中,当时,,故该选项正确;C选项中,当时,,故该选项错误;D选项中,当时,,故该选项错误.故选B【点睛】本题主要考查点是否在反比例函数图象上,掌握反比例函数变量的求法是解题的关键.9、B【分析】根据一元二次方程2x2+3=1的根的判别式的符号来判定抛物线y=2x2+3与x轴的交点个数,当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点.【详解】解:当y=1时,2x2+3=1.
∵△=12-4×2×3=-24<1,
∴一元二次方程2x2+3=1没有实数根,即抛物线y=2x2+3与x轴没有交点;
当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点,
∴抛物线y=2x2+3与两坐标轴的交点个数为1个.
故选B.【点睛】本题考查了抛物线与x轴、y轴的交点.注意,本题求得是“抛物线y=2x2+3与两坐标轴的交点个数”,而非“抛物线y=2x2+3与x轴交点的个数”.10、C【分析】根据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断.【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误.B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以该选项错误;故选:C.【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键.11、A【详解】根据二次函数的解析式可得:二次函数图像经过坐标原点,则排除B和C,A选项中一次函数a>0,b<0,二次函数a>0,b<0,符合题意.故选A.【点睛】本题考查了(1)、一次函数的图像;(2)、二次函数的图像12、B【分析】由切线的性质可得△OPB是直角三角形,则PB2=OP2﹣OB2,如图,又OB为定值,所以当OP最小时,PB最小,根据垂线段最短,知OP=3时PB最小,然后根据勾股定理即可求出答案.【详解】解:∵PB切⊙O于点B,∴∠OBP=90°,∴PB2=OP2﹣OB2,如图,∵OB=2,∴PB2=OP2﹣4,即PB=,∴当OP最小时,PB最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PB的最小值为.故选:B.【点睛】此题主要考查了切线的性质、勾股定理及垂线段最短等知识,属于常考题型,如何确定PB最小时点P的位置是解题的关键.二、填空题(每题4分,共24分)13、2【分析】把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【详解】∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.14、2或﹣2【解析】利用二次函数图象上点的坐标特征找出当y=2时x的值,结合当a≤x≤a+2时函数有最小值2,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=2时,有x2﹣2x+2=2,解得:x2=0,x2=2.∵当a≤x≤a+2时,函数有最小值2,∴a=2或a+2=0,∴a=2或a=﹣2,故答案为:2或﹣2.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=2时x的值是解题的关键.15、【分析】观察表格可得:(0,2)与(2,2)在抛物线上,由此可得抛物线的对称轴是直线x=1,顶点坐标是(1,1),且抛物线开口向上,于是可得点(-1,5)与(3,5)关于直线x=1对称,进而可得答案.【详解】解:根据表格中的数据可知:(0,2)与(2,2)关于直线x=1对称,所以抛物线的对称轴是直线x=1,顶点坐标是(1,1),且抛物线开口向上,∴点(-1,5)与(3,5)关于直线x=1对称,∴当时,的取值范围是:.故答案为:.【点睛】本题考查了抛物线的性质,通过观察得出抛物线的对称轴是直线x=1,灵活利用抛物线的对称性是解题的关键.16、【分析】过点P1作P1E⊥x轴于点E,过点P2作P2F⊥x轴于点F,过点P3作P3G⊥x轴于点G,根据△P1OA1,△P2A1A2,△P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐标,从而总结出一般规律得出点Pn的坐标.【详解】解:过点P1作P1E⊥x轴于点E,过点P2作P2F⊥x轴于点F,过点P3作P3G⊥x轴于点G,∵△P1OA1是等腰直角三角形,∴P1E=OE=A1E=OA1,设点P1的坐标为(a,a),(a>0),将点P1(a,a)代入,可得a=1,故点P1的坐标为(1,1),则OA1=2,设点P2的坐标为(b+2,b),将点P2(b+2,b)代入,可得b=,故点P2的坐标为(,),则A1F=A2F=,OA2=OA1+A1A2=,设点P3的坐标为(c+,c),将点P3(c+,c)代入,可得c=,故点P3的坐标为(,),综上可得:P1的坐标为(1,1),P2的坐标为(,),P3的坐标为(,),总结规律可得:Pn坐标为;故答案为:.【点睛】本题考查了反比例函数的综合,根据等腰三角形的性质结合反比例函数解析式求出P1,P2,P3的坐标,从而总结出一般规律是解题的关键.17、1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=1.故答案为118、1.【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=1个.故答案为:1.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)由等腰三角形的性质与圆周角定理,易得∠BCO=∠B=∠D;
(2)由垂径定理可求得CE与DE的长,然后证得△BCE∽△DAE,再由相似三角形的对应边成比例,求得BE的长,继而求得直径与半径,再求出圆心角∠BOD即可解决问题;【详解】(1)证明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:连接OD.∵AB是⊙O的直径,CD⊥AB,∴,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半径为2,∵,∴∠EOD=60°,∴∠BOD=120°,∴的长.【点睛】此题考查圆周角定理、垂径定理、相似三角形的判定与性质以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.证得△BCE∽△DAE是解题关键.20、(1)4;(2)2【分析】(1)设AD=x,根据切线长定理得到AF=AD,BE=BD,CE=CF,根据关系式列得方程解答即可;(2)连接OD、OE、OF、OA、OB、OC,将△ABC分为三个三角形:△AOB、△BOC、△AOC,再用面积法求得半径即可.【详解】解:(1)设,分别切的三边、、于点、、,,,,,,,,即,得,的长为.(2)如图,连接OD、OE、OF、OA、OB、OC,则OD⊥AB,OE⊥BC,OF⊥AC,且OD=OE=OF=2,∵,,,∴AB2+BC2=AC2,∴△ABC是直角三角形,且∠B是直角,∴△ABC的面积=,∴,∴OD=2,即的半径长为2.【点睛】此题考查圆的性质,切线长定理,利用面积法求得圆的半径,是一道圆的综合题.21、(1)(2),【详解】解:(1)方程有两个不相等的实数根,∴>1.即,解得,.(2)若k是负整数,k只能为-1或-2.如果k=-1,原方程为.解得,,.(如果k=-2,原方程为,解得,,.)22、(1);(2),【分析】(1)先按照二次根式的乘除法计算,然后去条绝对值,再计算加减法;(2)采用配方法解方程即可.【详解】解:(1)原式;(2)∴,【点睛】本题考查了二次根式的混合运算与解一元二次方程,熟练掌握二次根式的乘除运算法则和配方法是解题的关键.23、(1)见解析;(2)见解析;(1)存在,请确定C点的位置见解析,MN=1.【分析】(1)根据题意证明△DCB≌△ACE即可得出结论;(2)由题中条件可得△ACE≌△DCB,进而得出△ACM≌△DCN,即CM=CN,△MCN是等边三角形,即可得出结论;(1)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论.【详解】解:(1)∵△ACD与△BCE是等边三角形,∴AC=CD,CE=BC,
∴∠ACE=∠BCD,
在△ACE与△DCB中,,∴△ACE≌△DCB(SAS),∴DB=AE;(2)∵△ACE≌△DCB,∴∠CAE=∠BDC,
在△ACM与△DCN中,,∴△ACM≌△DCN,
∴CM=CN,
又∵∠MCN=180°-60°-60°=60°,
∴△MCN是等边三角形,
∴∠MNC=∠NCB=60°
即MN∥AB;(1)解:假设符合条件的点C存在,设AC=x,MN=y,
∵MN∥AB,∴,即,,当x=6时,ymax=1cm,即点C在点A右侧6cm处,且MN=1.【点睛】本题主要考查了全等三角形的判定及性质以及平行线分线段成比例的性质和二次函数问题,能够将所学知识联系起来,从而熟练求解.24、(1)A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);(2)或或;(3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6).【分析】(1)令y=0,解方程可得到A点和D点坐标;令x=0,求出y=-3,可确定C点坐标;(2)根据两个同底三角形面积相等得出它们的高相等,即纵坐标绝对值相等,得出点M的纵坐标为:,分别代入函数解析式求解即可;(3)分BC为梯形的底边和BC为梯形的腰两种情况讨论即可.【详解】(1)在中令,解得,∴A(4,0)、D(-2,0).在中令,得,∴C(0,-3);(2)过点C做轴的平行线,交抛物线与点,做点C关于轴的对称点,过点做轴的平行线,交抛物线与点,如下图所示:∵△MAD的面积与△CAD的面积相等,且它们是等底三角形∴点M的纵坐标绝对值跟点C的纵坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 31511:2024 EN Requirements for contactless delivery services in cold chain logistics
- 淮阴师范学院《数字电子技术》2021-2022学年期末试卷
- 淮阴师范学院《历史学专业导论》2021-2022学年第一学期期末试卷
- 淮阴师范学院《武术A》2022-2023学年第一学期期末试卷
- 淮阴工学院《设计管理》2023-2024学年第一学期期末试卷
- DB4403T459-2024研发与标准化同步企业评价规范
- 常见客诉处理
- 托儿所服务的知识传授与认知发展考核试卷
- 以倾听为话题的话题作文600字
- 生物识别技术在空间探索中的应用考核试卷
- 供配电工程及配套设施 投标方案(技术方案)
- AI技术在智能旅游中的应用
- 100ml生理盐水的配制讲解
- 财产损害谅解书
- 2024年半包装修合同Word模板(特殊条款版)
- 反洗钱:非自然人客户信息登记表
- 学前教育教研工作计划与目标
- 印刷保密协议
- 武术市场数据分析报告
- 校长竞聘笔试试题及答案
- 养老产业前期规划方案
评论
0/150
提交评论