版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄新世纪外国语校2024届中考数学模拟预测题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为()A.(0,1) B.(0,2) C. D.(0,3)2.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A. B. C. D.3.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10144.如图,四边形ABCE内接于⊙O,∠DCE=50°,则∠BOE=()A.100° B.50° C.70° D.130°5.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.主视图既是中心对称图形又是轴对称图形D.俯视图既是中心对称图形又是轴对称图形6.设α,β是一元二次方程x2+2x-1=0的两个根,则αβ的值是()A.2B.1C.-2D.-17.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A.10 B. C. D.158.如果(,均为非零向量),那么下列结论错误的是()A.// B.-2=0 C.= D.9.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①② B.①③ C.①③④ D.②③④10.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.12.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.13.分解因式:x3﹣2x2+x=______.14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=_____.15.把多项式x3﹣25x分解因式的结果是_____16.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.三、解答题(共8题,共72分)17.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?18.(8分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.(1)求被覆盖的这个数是多少?(2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.19.(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.20.(8分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).(1)求抛物线L的顶点坐标和A点坐标.(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.21.(8分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?22.(10分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求一次函数y=kx+b和y=的表达式;(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)23.(12分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值.24.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由,解得或,
∴A(2,1),B(1,0),
设C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案为(0,2).【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.2、D【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故选D.【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.3、B【解析】
由科学记数法的定义可得答案.【详解】解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,故选B.【点睛】科学记数法表示数的标准形式为(<10且n为整数).4、A【解析】
根据圆内接四边形的任意一个外角等于它的内对角求出∠A,根据圆周角定理计算即可.【详解】四边形ABCE内接于⊙O,,由圆周角定理可得,,故选:A.【点睛】本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).5、D【解析】
先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.【详解】解:A、主视图不是中心对称图形,故A错误;
B、左视图不是中心对称图形,故B错误;
C、主视图不是中心对称图形,是轴对称图形,故C错误;
D、俯视图既是中心对称图形又是轴对称图形,故D正确.
故选:D.【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.6、D【解析】试题分析:∵α、β是一元二次方程x2+2x-1=0的两个根,∴αβ=考点:根与系数的关系.7、C【解析】
A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.【详解】A,C之间的距离为6,2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,∴m=6,2020﹣2017=3,故点Q与点P的水平距离为3,∵解得k=6,双曲线1+3=4,即点Q离x轴的距离为,∴∵四边形PDEQ的面积是.故选:C.【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.8、B【解析】试题解析:向量最后的差应该还是向量.故错误.故选B.9、B【解析】
结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;
②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
剩下的选项中都有③,所以③是正确的;
易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.10、C【解析】
解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】
当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.【详解】连接CP、CQ;如图所示:∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案为:.【点睛】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.12、20【解析】
先求出半径为30cm且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.【详解】=40π.
设这个圆锥形纸帽的底面半径为r.
根据题意,得40π=2πr,
解得r=20cm.故答案是:20.【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.13、x(x-1)2.【解析】由题意得,x3﹣2x2+x=x(x﹣1)214、【解析】
延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.15、x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.详解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案为x(x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.16、1【解析】
根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.【详解】设小明的速度为akm/h,小亮的速度为bkm/h,,解得,,当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案为1.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.三、解答题(共8题,共72分)17、(1)答案见解析(2)36°(3)4550名【解析】试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解.(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人,;(2)360×=36°;(3)反对中学生带手机的大约有6500×=4550(名).考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.18、(1)2;(2)α=75°.【解析】
(1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值计算得出答案.【详解】解:(1)原式=1+﹣1+﹣□+1=1,∴□=1+﹣1++1﹣1=2;(2)∵α为三角形一内角,∴0°<α<180°,∴﹣15°<(α﹣15)°<165°,∵2tan(α﹣15)°=,∴α﹣15°=60°,∴α=75°.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.19、(1)100、35;(2)补图见解析;(3)800人;(4)【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为.点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)顶点(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【解析】
(1)将点B和点C代入求出抛物线L即可求解.(2)将抛物线L化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.【详解】(1)将点B(-3,0),C(0,3)代入抛物线得:,解得,则抛物线.抛物线与x轴交于点A,,,A(-1,0),抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).(2)抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1)抛物线L1的顶点与抛物线L的顶点关于原点对称,对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3)使得△PAC为等腰直角三角形,作出所有点P的可能性.是等腰直角三角形,,,,,求得.,同理得,,,由题意知抛物线并将点代入得:.【点睛】本题主要考查抛物线综合题,讨论出P点的所有可能性是解题关键.21、(1)60人;(2)144°,补全图形见解析;(3)15万人.【解析】
(1)用B景点人数除以其所占百分比可得;(2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;(3)用总人数乘以样本中D景点人数所占比例【详解】(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,补全图形如下:(3)估计选择去景点D旅游的人数为90×=15(万人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1),;(2)点C的坐标为或;(3)2.【解析】试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;
(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,根据三角形的面积公式结合△ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得出点C的坐标;
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,根据反比例函数解析式以及平移的性质找出点E、F、M、N的坐标,根据EM∥FN,且EM=FN,可得出四边形EMNF为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF的面积S,根据平移的性质即可得出C1平移至C2处所扫过的面积正好为S.试题解析:(1)∵点A(4,3)在反比例函数y=的图象上,∴a=4×3=12,∴反比例函数解析式为y=;∵OA==1,OA=OB,点B在y轴负半轴上,∴点B(0,﹣1).把点A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函数的解析式为y=2x﹣1.(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,如图1所示.令y=2x﹣1中y=0,则x=,∴D(,0),∴S△ABC=CD•(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故当△ABC的面积是8时,点C的坐标为(,0)或(,0).(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示.令y=中x=1,则y=12,∴E(1,12),;令y=中x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年科研项目研究员聘任协议
- 2024-2030年中国有机棉行业供需状况及投资战略分析报告版
- 2024-2030年中国整体橱柜行业市场深度分析及竞争格局与投资研究报告
- 2024-2030年中国摩托车尾气排放检测设备行业市场运营模式及未来发展动向预测报告
- 2024-2030年中国换热器市场销售预测及未来发展策略分析报告
- 2024-2030年中国扎带行业竞争格局及未来发展策略分析报告
- 2024-2030年中国房室综合症监测行业发展前景与投资趋势预测报告
- 2024-2030年中国征信行业深度调研及未来发展趋势预测报告
- 2024-2030年中国异欧前胡素项目可行性研究报告
- 金属家具行业数字化转型
- (完整版)小学生24点习题大全(含答案)
- 2024年档案管理中级考试试卷及答案发布
- 外国新闻传播史 课件 第二十章 澳大利亚的新闻传播事业
- 妊娠期及产褥期静脉血栓栓塞症预防和诊治试题及答案
- 好的六堡茶知识讲座
- 环境科学大学生生涯发展报告
- 钢筋优化技术创效手册(2022年)
- 医学课件指骨骨折
- 酒店式公寓方案
- 二年级下册语文课件-作文指导:13-通知(23张PPT) 部编版
- 同先辈比我们身上少了什么
评论
0/150
提交评论