浙江省海曙区五校联考2025届数学九上期末监测模拟试题含解析_第1页
浙江省海曙区五校联考2025届数学九上期末监测模拟试题含解析_第2页
浙江省海曙区五校联考2025届数学九上期末监测模拟试题含解析_第3页
浙江省海曙区五校联考2025届数学九上期末监测模拟试题含解析_第4页
浙江省海曙区五校联考2025届数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省海曙区五校联考2025届数学九上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内 B.在⊙O上C.在⊙O外 D.与⊙O的位置关系无法确定2.将函数的图象向左平移个单位,再向下平移个单位,可得到的抛物线是:()A. B. C. D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.-1<x<2 B.x>2 C.x<-1 D.x<-1或x>24.有一等腰三角形纸片ABC,AB=AC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是()A.甲 B.乙 C.丙 D.丁5.获2019年度诺贝尔化学奖的“锂电池”创造了一个更清洁的世界.我国新能源发展迅猛,某种特型锂电池2016年销售量为8万个,到2018年销售量为97万个.设年均增长率为x,可列方程为()A.8(1+x)2=97 B.97(1﹣x)2=8 C.8(1+2x)=97 D.8(1+x2)=976.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A. B. C. D.7.如图,⊙O中弦AB=8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是()A.4 B.5 C.6 D.1°8.如图,直线与双曲线交于、两点,则当时,x的取值范围是A.或B.或C.或D.9.计算的值是()A. B. C. D.10.如图,四边形ABCD的顶点A,B,C在圆上,且边CD与该圆交于点E,AC,BE交于点F.下列角中,弧AE所对的圆周角是()A.∠ADE B.∠AFE C.∠ABE D.∠ABC11.下列各点中,在反比例函数图象上的是()A.(3,1) B.(-3,1) C.(3,) D.(,3)12.如图,在矩形中,,在上取一点,沿将向上折叠,使点落在上的点处,若四边形与矩形相似,则的长为()A. B. C. D.1二、填空题(每题4分,共24分)13.若a是方程x2-x-1=0的一个根,则2a2-2a+5=________.14.连接三角形各边中点所得的三角形面积与原三角形面积之比为:.15.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为_____.16.如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变长了_____m.17.如图,为半圆的直径,点、、是半圆弧上的三个点,且,,若,,连接交于点,则的长是______.18.某一建筑物的楼顶是“人”字型,并铺上红瓦装饰.现知道楼顶的坡度超过0.5时,瓦片会滑落下来.请你根据图中数据判断这一楼顶铺设的瓦片是否会滑落下来?________.(填“会”或“不会”)三、解答题(共78分)19.(8分)在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.20.(8分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.(1)求证:四边形AEGF是正方形;(2)求AD的长.21.(8分)如图,正方形ABCD中,E为BC上一点,EF⊥AE,交CD于点F,求证:AB:CE=BE:CF.22.(10分)某校垃圾分类“督察部”从4名学生会干部(2男2女)随机选取2名学生会干部进行督查,请用枚举、列表或画树状图的方法求出恰好选中两名男生的概率.23.(10分)如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.(1)求轮船M到海岸线l的距离;(结果精确到0.01米)(2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.(参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.1.)24.(10分)已知:关于x的方程(1)求证:m取任何值时,方程总有实根.(2)若二次函数的图像关于y轴对称.a、求二次函数的解析式b、已知一次函数,证明:在实数范围内,对于同一x值,这两个函数所对应的函数值均成立.(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.25.(12分)某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.如图,正方形ABCD的边长为2,点E是AD边上的动点,从点A开始沿AD向D运动.以BE为边,在BE的上方作正方形BEFG,EF交DC于点H,连接CG、BH.请探究:(1)线段AE与CG是否相等?请说明理由.(2)若设AE=x,DH=y,当x取何值时,y最大?最大值是多少?(3)当点E运动到AD的何位置时,△BEH∽△BAE?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据点与圆的位置关系判断即可.【详解】∵点P到圆心的距离为3cm,而⊙O的半径为4cm,∴点P到圆心的距离小于圆的半径,∴点P在圆内,故选:A.【点睛】此题考查的是点与圆的位置关系,掌握点与圆的位置关系的判断方法是解决此题的关键.2、C【分析】先根据“左加右减”的原则求出函数y=-1x2的图象向左平移2个单位所得函数的解析式,再根据“上加下减”的原则求出所得函数图象向下平移1个单位的函数解析式.【详解】解:由“左加右减”的原则可知,将函数的图象向左平移1个单位所得抛物线的解析式为:y=2(x+1)2;

由“上加下减”的原则可知,将函数y=2(x+1)2的图象向下平移1个单位所得抛物线的解析式为:y=2(x+1)2-1.

故选:C.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.3、D【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.4、D【分析】根据相似三角形的性质求得甲的面积和丙的面积,进一步求得乙和丁的面积,比较即可求得.【详解】解:如图:∵AD⊥BC,AB=AC,∴BD=CD=5+2=7,∵AD=2+1=3,∴S△ABD=S△ACD==∵EF∥AD,∴△EBF∽△ABD,∴=()2=,∴S甲=,∴S乙=,同理=()2=,∴S丙=,∴S丁=﹣=,∵,∴面积最大的是丁,故选:D.【点睛】本题考查了三角形相似的判定和性质,相似三角形面积的比等于相似比的平方.解题的关键是熟练掌握相似三角形的判定和性质进行解题.5、A【分析】2018年年销量=2016年年销量×(1+年平均增长率)2,把相关数值代入即可.【详解】解:设年均增长率为x,可列方程为:8(1+x)2=1.故选:A.【点睛】此题主要考查了根据实际问题列一元二次方程;得到2018年收入的等量关系是解决本题的关键.6、C【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为,高为,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,,BD=CD,AO=BO,∴,,∴,∴,∴.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.7、B【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,设OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【详解】解:连接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,设OA=OC=x,则OE=OC-CE=x-2在Rt△AOE由勾股定理得:即:,解得:,故选择:B【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8、C【解析】试题解析:根据图象可得当时,x的取值范围是:x<−6或0<x<2.故选C.9、A【解析】先算cos60°=,再计算即可.【详解】∵∴故答案选A.【点睛】本题考查特殊角的三角函数值,能够准确记忆60°角的余弦值是解题的关键.10、C【分析】直接运用圆周角的定义进行判断即可.【详解】解:弧AE所对的圆周角是:∠ABE或∠ACE故选:C【点睛】本题考查了圆周角的定义,掌握圆周角的定义是解题的关键.11、A【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;

B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵,∴此点不在反比例函数的图象上,故C错误;D、∵,∴此点不在反比例函数的图象上,故D错误;故选A.12、C【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:∵AB=1,可得AF=BE=1,

设DF=x,则AD=x+1,FE=1,

∵四边形EFDC与矩形ABCD相似,∴,即:,解得,(不合题意舍去),经检验是原方程的解,∴DF的长为,故选C.【点睛】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.二、填空题(每题4分,共24分)13、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可.【详解】根据题意,得a2-a-1=0,即a2-a=1;∴2a2-2a+5=2(a2-a)+5=2×1+5=1,即2a2-2a+5=1.故答案是:1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14、1:1【分析】证出DE、EF、DF是△ABC的中位线,由三角形中位线定理得出,证出△DEF∽△CBA,由相似三角形的面积比等于相似比的平方即可得出结果.【详解】解:如图所示:∵D、E、F分别AB、AC、BC的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC,EF=AB,DF=AC,∴∴△DEF∽△CBA,∴△DEF的面积:△CBA的面积=()2=.故答案为1:1.考点:三角形中位线定理.15、2【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴2,∴AF=2GF=4,∴AG=1.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=2.故答案为:2.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.16、1.【分析】根据由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,即、,据此求得DE、HG的值,从而得出答案.【详解】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴、,即、,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长变长1m.故答案为:1.【点睛】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.17、【分析】连接OC,根据菱形的判定,可得四边形AODC为菱形,从而得出AC=OD,根据圆的性质可得OE=OC=AC=OA=,从而得出△AOC为等边三角形,然后根据同弧所对的圆周角是圆心角的一半,可求得∠EOC,从而得出OE平分∠AOC,根据三线合一和锐角三角函数即可求出OF,从而求出EF.【详解】解:连接OC∵,,OA=OD∴四边形AODC为菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC为等边三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案为:.【点睛】此题考查的是菱形的判定及性质、圆的基本性质、等边三角形的判定及性质和解直角三角形,掌握菱形的判定及性质、同弧所对的圆周角是圆心角的一半、等边三角形的判定及性质和用锐角三角函数解直角三角形是解决此题的关键.18、不会【分析】根据斜坡的坡度的定义,求出坡度,即可得到答案.【详解】∵∆ABC是等腰三角形,AB=AC=13m,AH⊥BC,∴CH=BC=12m,∴AH=m,∴楼顶的坡度=,∴这一楼顶铺设的瓦片不会滑落下来.故答案是:不会.【点睛】本题主要考查斜坡坡度的定义,掌握坡度的定义,是解题的关键.三、解答题(共78分)19、(1)E(3,3),F(3,0);(2)见解析.【解析】分析:(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.详解:(1)如图,△AEF为所作,E(3,3),F(3,0);(2)如图,△A1E1F1为所作.点睛:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.20、(1)见解析;(2)AD=1;【分析】(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x﹣2)2+(x﹣3)2=52,求出AD=x=1.【详解】(1)证明:由翻折的性质可得,△ABD≌△ABE,△ACD≌△ACF,∴∠DAB=∠EAB,∠DAC=∠FAC,∵∠BAC=45°,∴∠EAF=90°,∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°,∴四边形AEGF为矩形,∵AE=AD,AF=AD,∴AE=AF,∴矩形AEGF是正方形;(2)解:根据对称的性质可得:BE=BD=2,CF=CD=3,设AD=x,则正方形AEGF的边长是x,则BG=EG﹣BE=x﹣2,CG=FG﹣CF=x﹣3,在Rt△BCG中,根据勾股定理可得:(x﹣2)2+(x﹣3)2=52,解得:x=1或x=﹣1(舍去).∴AD=x=1;【点睛】本题考查了翻折对称的性质,全等三角形和勾股定理,以及正方形的判定,解本题的关键是熟练掌握翻折变换的性质:翻折前后图形的对应边或对应角相等;有四个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形.21、详见解析【分析】证明△AEB∽△EFC,根据相似三角形的对应边成比例即可得到结论.【详解】∵EF⊥AE,∠B=∠C=90°,∴∠AEB+∠FEC=∠FEC+∠EFC=90°,∴∠AEB=∠EFC,∴△AEB∽△EFC,∴,即AB:CE=BE:CF【点睛】本题考查了正方形的性质及相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.22、.【分析】用列表法或树状图法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率.【详解】用列表法得出所有可能出现的情况如下:共有12种等可能的情况,其中两人都是男生的有2种,∴P(两人都是男生)==.【点睛】本题考查求概率,熟练掌握列表法或树状图法是解题的关键.23、(1)167.79;(2)能.理由见解析.【分析】(1)过点M作MD⊥AC交AC的延长线于D,设DM=x.由三角函数表示出CD和AD的长,然后列出方程,解方程即可;(2)作∠DMF=30°,交l于点F.利用解直角三角形求出DF的长度,然后得到AF的长度,与AB进行比较,即可得到答案.【详解】解:(1)过点M作MD⊥AC交AC的延长线于D,设DM=x.∵在Rt△CDM中,CD=DM·tan∠CMD=x·tan22°,又∵在Rt△ADM中,∠MAC=45°,∴AD=DM=x,∵AD=AC+CD=100+x·tan22°,∴100+x·tan22°=x.∴(米).答:轮船M到海岸线l的距离约为167.79米.(2)作∠DMF=30°,交l于点F.在Rt△DMF中,有:DF=DM·tan∠FMD=DM·tan30°=DM≈≈96.87米.∴AF=AC+CD+DF=DM+DF≈167.79+96.87=264.66<2.∴该轮船能行至码头靠岸.【点睛】本题考查了方向角问题.注意准确构造直角三角形是解此题的关键.24、(1)证明见解析;(2)a、y1=x2-1;b、证明见解析;(3).【解析】(1)首先此题的方程并没有明确是一次方程还是二次方程,所以要分类讨论:①m=0,此时方程为一元一次方程,经计算可知一定有实数根;②m≠0,此时方程为二元一次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明.(2)①由于抛物线的图象关于y轴对称,那么抛物线的一次项系数必为0,可据此求出m的值,从而确定函数的解析式;②此题可用作差法求解,令y1-y2,然后综合运用完全平方式和非负数的性质进行证明.(3)根据②的结论,易知y1、y2的交点为(1,0),由于y1≥y3≥y2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a表示出y3的函数解析式;已知y3≥y2,可用作差法求解,令y=y3-y2,可得到y的表达式,由于y3≥y2,所以y≥0,可据此求出a的值,即可得到抛物线的解析式.【详解】解:(1)分两种情况:当m=0时,原方程可化为3x-3=0,即x=1;∴m=0时,原方程有实数根;当m≠0时,原方程为关于x的一元二次方程,∵△=[-3(m-1)]2-4m(2m-3)=m2-6m+9=(m-3)2≥0,∴方程有两个实数根;综上可知:m取任何实数时,方程总有实数根;(2)①∵关于x的二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;∴3(m-1)=0,即m=1;∴抛物线的解析式为:y1=x2-1;②∵y1-y2=x2-1-(2x-2)=(x-1)2≥0,∴y1≥y2(当且仅当x=1时,等号成立);(3)由②知,当x=1时,y1=y2=0,即y1、y2的图象都经过(1,0);∵对应x的同一个值,y1≥y3≥y2成立,∴y3=ax2+bx+c的图象必经过(1,0),又∵y3=ax2+bx+c经过(-5,0),∴y3=a(x-1)(x+5)=ax2+4ax-5a;设y=y3-y2=ax2+4ax-5a-(2x-2)=ax2+(4a-2)x+(2-5a);对于x的同一个值,这三个函数对应的函数值y1≥y3≥y2成立,∴y3-y2≥0,∴y=ax2+(4a-2)x+(2-5a)≥0;根据y1、y2的图象知:a>0,∴y最小=≥0∴(4a-2)2-4a(2-5a)≤0,∴(3a-1)2≤0,而(3a-1)2≥0,只有3a-1=0,解得a=,∴抛物线的解析式为:【点睛】本题考查二次函数与一元二次方程的关系、根的判别式、完全平方公式、非负数的性质以及用待定系数法确定函数解析式的方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论