版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
培优课数列求和的常用方法非等差、等比数列的一般数列求和,主要有两种思想1.转化思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.类型一公式法【例1】
设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6. (1)求Sn和Tn;解设等比数列{bn}的公比为q.由b1=1,b3=b2+2,可得q2-q-2=0.设等差数列{an}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,(2)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值.解由(1)知T1+T2+…+Tn=(21+22+…+2n)-n=2n+1-n-2.由Sn+(T1+T2+…+Tn)=an+4bn,整理得n2-3n-4=0,解得n=-1(舍去)或n=4.∴n的值为4.类型二倒序相加法1010类型三裂项相消法【例3】已知数列{an}的前n项和为Sn,满足S2=2,S4=16,{an+1}是等比数列. (1)求数列{an}的通项公式;解
设等比数列{an+1}的公比为q,其前n项和为Tn,因为S2=2,S4=16,所以T2=4,T4=20,当q=-2时,a1=-5,所以an+1=(-4)×(-2)n-1=-(-2)n+1.所以bn=log2(3an+3)=n+1,所以bn=log2(3an+3)=n+1,类型四分组求和法【例4】
已知等差数列{an}满足a5=9,a2+a6=14.(1)求{an}的通项公式;解设数列{an}的公差为d,所以{an}的通项公式为an=2n-1.(2)若bn=an+qan(q>0),求数列{bn}的前n项和Sn.解由an=2n-1得bn=2n-1+q2n-1.当q=1时,bn=2n,则Sn=n(n+1).所以数列{bn}的前n项和Sn=【例5】已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3. (1)求数列{an}的通项公式;类型五错位相减法解设{an}的公比为q,由题意知:a1(1+q)=6,
q=a1q2,又an>0,解得:a1=2,q=2,所以an=2n.又S2n+1=bnbn+1,bn+1≠0,所以bn=2n+1.因此Tn=c1+c2+…+cn尝试训练1.设数列{an}满足:a1=1,an+1=3an,n∈N*. (1)求{an}的通项公式及前n项和Sn; (2)已知{bn}是等差数列,Tn为其前n项和,且b1=a2,b3=a1+a2+a3,求T20.2.已知定义在R上的函数f(x)的图象的对称中心为(1011,2).数列{an}的前n项和为Sn,且满足an=f(n),n∈N*.求S2021.解由条件得f(2×1011-x)+f(x)=2×2,即f(2022-x)+f(x)=4.于是有a2022-n+an=4(n∈N*).又S2021=a1+a2+a3+…+a2020+a2021,S2021=a2021+a2020+…+a2+a1.两式相加得2S2021=(a1+a2021)+(a2+a2020)+…+(a2020+a2)+(a2021+a1)=2021(a1+a2021)=2021×4.故S2021=2021×2=4042.3.设Sn为等差数列{an}的前n项和,已知S3=a7,a8-2a3=3. (1)求an;解
设数列{an}的公差为d,解得a1=3,d=2,∴an=a1+(n-1)d=2n+1.∴Tn=b1+b2+…+bn-1+bn4.已知等差数列{an}的前n项和为Sn,且a1=1,S3+S4=S5. (1)求数列{an}的通项公式; (2)令bn=(-1)n-1an,求数列{bn}的前2n项和T2n.解(1)设等差数列{an}的公差为d,由S3+S4=S5可得a1+a2+a3=a5,即3a2=a5,∴3(1+d)=1+4d,解得d=2.∴an=1+(n-1)×2=2n-1.(2)由(1)可得bn=(-1)n-1·(2n-1).∴T2n=1-3+5-7+…+(2n-3)-(2n-1)=(1-3)+(5-7)+…+[(2n-3)-(2n-1)]=(-2)×n=-2n.5.已知数列{an}的前n项和为Sn,且满足an=3Sn-2(n∈N*). (1)求数列{an}的通项公式;解当n=1时,a1=3S1-2=3a1-2,解得a1=1.当n≥2时,an=3Sn-2,an-1=3Sn-1-2,(2)求数列{nan}的前n项和Tn.备用工具&资料5.已知数列{an}的前n项和为Sn,且满足an=3Sn-2(n∈N*). (1)求数列{an}的通项公式;解当n=1时,a1=3S1-2=3a1-2,解得a1=1.当n≥2时,an=3Sn-2,an-1=3Sn-1-2,∴Tn=b1+b2+…+bn-1+bn2.已知定义在R上的函数f(x)的图象的对称中心为(1011,2).数列{an}的前n项和为Sn,且满足an=f(n),n∈N*.求S2021.解由条件得f(2×1011-x)+f(x)=2×2,即f(2022-x)+f(x)=4.于是有a2022-n+an=4(n∈N*).又S2021=a1+a2+a3+…+a2020+a2021,S2021=a2021+a2020+…+a2+a1.两式相加得2S2021=(a1+a2021)+(a2+a2020)+…+(a2020+a2)+(a2021+a1)=2021(a1+a2021)=2021×4.故S2021=2021×2=4042.【例5】已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3. (1)求数列{an}的通项公式;类型五错位相减法解设{an}的公比为q,由题意知:a1(1+q)=6,
q=a1q2,又an>0,解得:a1=2,q=2,所以an=2n.类型一公式法【例1】
设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6. (1)求Sn和Tn;解设等比数列{bn}的公比为q.由b1=1,b3=b2+2,可得q2-q-2=0.设等差数列{an}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026四川成都市青白江区人民医院集团第一次自主招聘卫生专业技术人员22人备考题库及一套完整答案详解
- 2025辽宁葫芦岛市建昌县宣传部及社会工作部所属事业单位招聘高层次人才9人备考题库带答案详解
- 2025内蒙古呼伦贝尔市阿荣旗教育事业发展中心遴选教研员4人备考题库及答案详解1套
- 2026中国电子科技集团公司第十一研究所招聘备考题库及一套参考答案详解
- 2026广西壮族自治区社科联招聘编外人员2人备考题库及答案详解1套
- 2026江西南昌大学附属口腔医院高层次人才招聘备考题库(3)及答案详解(易错题)
- 2026年甘肃省庆阳市华池县教育事业单位引进高层次和急需紧缺人才15人备考题库及答案详解(考点梳理)
- 2026四川广元市特种设备监督检验所第一批检验检测人员招聘7人备考题库及一套参考答案详解
- 2025广东清远市清城区档案馆招聘后勤服务类人员1人备考题库及参考答案详解一套
- 智能制造项目可行性分析报告
- 2026年教育平台资源输出协议
- 【《四旋翼飞行器坐标系及相互转换关系分析综述》1000字】
- 广东深圳市盐田高级中学2024~2025学年高一上册1月期末考试化学试题 附答案
- 人力资源部2025年度工作总结与2026年度战略规划
- 2025年安徽理工大学马克思主义基本原理概论期末考试参考题库
- 机械工程师职称评定技术报告模板
- 档案移交数字化建设规划
- 孤独症个案护理
- 建筑施工风险辨识与防范措施
- 高职汽车维修专业培训教材
- 2026年中级注册安全工程师之安全生产法及相关法律知识考试题库500道含答案ab卷
评论
0/150
提交评论