版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的表达式是()A. B. C. D.2.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.3.用小立方块搭成的几何体,从正面看和从上面看的形状图如下,则组成这样的几何体需要的立方块个数为()A.最多需要8块,最少需要6块 B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块 D.最多需要9块,最少需要7块4.已知反比例函数的图象经过点(2,-2),则k的值为A.4 B. C.-4 D.-25.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为()A. B.C. D.6.如图所示的几何体的左视图为()A. B. C. D.7.下列说法正确的是()A.垂直于半径的直线是圆的切线 B.经过三点一定可以作圆C.平分弦的直径垂直于弦 D.每个三角形都有一个外接圆8.从拼音“nanhai”中随机抽取一个字母,抽中a的概率为()A. B. C. D.9.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是()A.40° B.80° C.100° D.120°10.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.8 B.16 C.24 D.32二、填空题(每小题3分,共24分)11.如果关于的一元二次方程的一个解是,则________.12.已知cos(a-15°)=,那么a=____________13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).14.如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把△CDB绕点C旋转90°,点D的对应点为点D′,则OD′的长为_________.15.已知方程的两实数根的平方和为,则k的值为____.16.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其长边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其长边恰好落在水平桌面l上,则木板上点A滚动所经过的路径长为_____.17.在直角坐标系中,点A(-7,)关于原点对称的点的坐标是_____.18.在矩形中,,,绕点顺时针旋转到,连接,则________.三、解答题(共66分)19.(10分)如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.(6分)用配方法解方程:x2﹣6x=1.21.(6分)用适当的方法解下列方程:22.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.23.(8分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)24.(8分)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值.(2)求y2关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?25.(10分)已知关于x的一元二次方程x2+(2k+1)x+k2=0有实数根.(1)求k的取值范围.(2)设方程的两个实数根分别为x1、x2,若2x1x2﹣x1﹣x2=1,求k的值.26.(10分)LED显示屏(LEDdisplay)是一种平板显示器,可以显示计算机生成的动态图文画面.如图1是屏幕显示的一个正三角形网格的示意图,其中每个小正三角形的边长均为l.位于中点处的输入光点按图2的程序移动.(1)请在图1中画出光点经过的路径:(2)求光点经过的路径总长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】如图,过点A作AC⊥x轴于点C,构建矩形ABOC,根据反比例函数系数k的几何意义知|k|=四边形ABOC的面积.【详解】如图,过点A作AC⊥x轴于点C.则四边形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=−2.又∵函数图象位于第一象限,∴k>0,∴k=2.则反比函数解析式为.故选C.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握反比例函数的性质.2、D【解析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.3、C【分析】易得这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【详解】由主视图可得:这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多为3+4+1=8个最少为2+4+1=7个故选C【点睛】本题考查由三视图判断几何体,熟练掌握立体图形的三视图是解题关键.4、C【解析】∵反比例函数的图象经过点(2,-2),∴.故选C.5、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将化为顶点式,得.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为,故选B.【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6、D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D选项符合题意,故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B、C.7、D【分析】根据圆的切线的定义、圆的定义、垂径定理、三角形外接圆的定义逐项判断即可.【详解】A、垂直于半径且与圆只有一个交点的直线是圆的切线,此项说法错误B、不在同一直线上的三点一定可以作圆,此项说法错误C、平分弦(非直径)的直径垂直于弦,此项说法错误D、每个三角形都有一个外接圆,此项说法正确故选:D.【点睛】本题考查了圆的切线的定义、圆的定义、垂径定理、三角形外接圆的定义,熟记圆的相关概念和定理是解题关键.8、B【解析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案.【详解】∵nanhai共有6个拼音字母,a有2个,∴抽中a的概率为,故选:B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9、C【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,
∴∠C+∠A=180°,
∵∠A=80°,
∴∠C=100°,
故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.10、B【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,
∴=0.5,
解得:m=1.
故选:B.【点睛】考查了利用频率估计概率,解题关键是利用了用大量试验得到的频率可以估计事件的概率.二、填空题(每小题3分,共24分)11、1【分析】利用一元二次方程解的定义得到,然后把变形为,再利用整体代入的方法计算.【详解】把代入方程得:,
∴,
∴.
故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12、45°【分析】由题意直接利用特殊角的三角函数值,进行分析计算进而得出答案.【详解】解:∵,∴a-15°=30°,∴a=45°.故答案为:45°.【点睛】本题主要考查特殊角的三角函数值,牢记是特殊角的三角函数值解题的关键.13、0.1【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.101,所以估计种子发芽的概率为0.101,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.101,故可以估计种子发芽的概率为0.101,精确到0.1,即为0.1,故本题答案为:0.1.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.14、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【详解】解:因为点D(4,1)在边AB上,
所以AB=BC=4,BD=4-1=3;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=BD=3,
所以D′(3,0);∴;
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为8,到y轴的距离为3,
所以D′(3,8),∴;
故答案为:3或.【点睛】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.15、3【分析】根据一元二次方程根与系数的关系,得出和的值,然后将平方和变形为和的形式,代入便可求得k的值.【详解】∵,设方程的两个解为则,∵两实根的平方和为,即=∴解得:k=3或k=-11∵当k=-11时,一元二次方程的△<0,不符,需要舍去故答案为:3【点睛】本题考查根与系数的关系,注意在最后求解出2个值后,有一个值不符需要舍去.16、π【分析】木板转动两次的轨迹如图(见解析):第一次转动是以点M为圆心,AM为半径,圆心角为60度;第二次转动是以点N为圆心,为半径,圆心角为90度,根据弧长公式即可求得.【详解】由题意,木板转动两次的轨迹如图:(1)第一次转动是以点M为圆心,AM为半径,圆心角为60度,即所以弧的长(2)第二次转动是以点N为圆心,为半径,圆心角为90度,即所以弧的长(其中半径)所以总长为故答案为.【点睛】本题考查了图形的翻转、弧长公式(弧长,其中是圆心角弧度数,为半径),理解图形翻转的轨迹是解题关键.17、(7,).【分析】直接利用关于原点对称点的性质得出答案.【详解】解:点A(-7,)关于原点对称的点的坐标是:(7,).故答案为:(7,).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.18、【分析】根据勾股定理求出BD,再根据等腰直角三角形的性质,BF=BD计算即可.【详解】解:∵四边形ABCD是矩形,
∴AD=BC=8,∠A=90°,
∵AB=6,
∴BD===10,
∵△BEF是由△ABD旋转得到,
∴△BDF是等腰直角三角形,
∴DF=BD=10,
故答案为10.【点睛】本题考查旋转的性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用勾股定理解决问题,属于中考常考题型.三、解答题(共66分)19、台灯的高约为45cm.【分析】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,可得四边形DGFH是矩形,可得DG=FH,根据∠A的余弦可求出AC的长,进而可得AD的长,根据∠A的正弦即可求出DG的长,由∠ADE=135°可得∠EDH=15°,根据∠DEH的正弦可得EH的长,根据EF=EH+FH求出EF的长即可得答案.【详解】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,∴四边形DGFH是矩形,∴DG=FH,∵∠A=60°,AB=16,∴AC=AB·cos60°=16×=8,∴AD=AC+CD=8+40=48,∴DG=AD·sin60°=24,∵DH⊥EF,AF⊥EF,∴DH//AF,∴∠ADH=180°-∠A=120°,∵∠ADE=135°,∴∠EDH=∠ADE-∠ADH=15°,∵DE=15,∴EH=DE·sin15°≈3.9,∴EF=EH+FH=EH+DG=24+3.9≈45,答:台灯的高约为45cm.【点睛】本题主要考查解直角三角形的应用,正确应用锐角三角函数的关系是解题关键.20、x1=3﹣,x2=3+.【分析】根据配方法,可得方程的解.【详解】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x1=3﹣,x2=3+.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知配方法解方程.21、,.【分析】先移项,再利用因式分解法解方程即可.【详解】移项,得,即因式分解得于是得或解得故原方程的解为.【点睛】本题考查了利用因式分解法解一元二次方程,主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟记各解法是解题关键.22、(1)x的值为11m或15m;(2)花园面积S的最大值为168平方米.【分析】(1)直接利用矩形面积公式结合一元二次方程的解法即可求得答案;(2)首先得到S与x的关系式,进而利用二次函数的增减性即可求得答案.【详解】(1)∵AB=xm,则BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值为11m或15m;(2)由题意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由题意得:14≤x≤19,∵-1<0,14≤x≤19,∴S随着x的增大而减小,∴x=14时,S取到最大值为:S=﹣(14﹣13)2+169=168,答:花园面积S的最大值为168平方米.【点睛】本题考查了二次函数的应用以及一元二次方程的解法,正确结合二次函数的增减性求得最值是解题的关键.23、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈=20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24、(1)a=5时,y1的值是1050;(2)y2=﹣2b2+28b+960;(3)每件衬衫下降11元时,两家分店一天的盈利和最大,最大是2244元.【分析】(1)根据题意,可以写出y1与a的函数关系式,然后将a=5代入函数解析式,即可求得相应的y1值;(2)根据题意,可以写出y2关于b的函数表达式;(3)根据题意可以写出利润与所降
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 线描课件教学
- 《吸入麻醉药王国贤》课件
- 手机卖场岗前培训
- 《科技异化》课件
- 《种尊重的教学》课件
- 小学科学课件6年级
- 胸腔镜手术手术配合
- 《妇产科学》课件-13.4卵巢肿瘤
- 糖尿病高渗高血糖综合征
- 《保洁管理的涵义》课件
- 医药代表培训完整教程
- GB/T 44713-2024节地生态安葬服务指南
- 《可持续发展新理念》课件
- 玻璃生产车间改造方案
- 2024年国家公务员考试《申论》真题(副省级)及答案解析
- 2024年大学生求职面试技巧培训课件
- 一年级家长会课件2024-2025学年
- 无人机入门培训
- 2024-2030年中国通信基站锂电池市场营销现状及投资前景预测研究报告
- 瑜伽馆会员管理与服务质量提升手册
- DB15T 435-2020 公路风吹雪雪害防治技术规程
评论
0/150
提交评论