高三高考数学复习练习高考专题突破六高考中的概率与统计问题_第1页
高三高考数学复习练习高考专题突破六高考中的概率与统计问题_第2页
高三高考数学复习练习高考专题突破六高考中的概率与统计问题_第3页
高三高考数学复习练习高考专题突破六高考中的概率与统计问题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考专题突破六1.甲、乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球、2个红球,由裁判有放回地摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.(1)求游戏Ⅰ中甲赢的概率;(2)求游戏Ⅱ中乙赢的概率,并比较这两种游戏哪种游戏更公平,试说明理由.【解析】(1)∵游戏Ⅰ中有放回地依次摸出两球的基本事件有5×5=25(个),其中甲赢有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),(2,2),(2,4),(4,4),(4,2),共13个基本事件,∴游戏Ⅰ中甲赢的概率为P=eq\f(13,25).(2)设4个白球为a,b,c,d,2个红球为A,B,则游戏Ⅱ中有放回地依次摸出两球,基本事件有6×6=36(个),其中乙赢有(a,A),(b,A),(c,A),(d,A),(a,B),(b,B),(c,B),(d,B),(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),共16个基本事件,∴游戏Ⅱ中乙赢的概率为P′=eq\f(16,36)=eq\f(4,9).∵eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(13,25)-\f(1,2)))<eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(4,9)-\f(1,2))),∴游戏Ⅰ更公平.2.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本平均数;(2)日加工零件个数大于样本平均数的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.【解析】(1)样本平均数为eq\f(17+19+20+21+25+30,6)=eq\f(132,6)=22.(2)由(1)知样本中优秀工人占的比例为eq\f(2,6)=eq\f(1,3),故推断该车间12名工人中有12×eq\f(1,3)=4(名)优秀工人.(3)设事件A:“从该车间12名工人中,任取2人,恰有1名优秀工人”,则P(A)=eq\f(Ceq\o\al(1,4)Ceq\o\al(1,8),Ceq\o\al(2,12))=eq\f(16,33).3.某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:12345678910甲11.612.213.213.914.011.513.114.511.714.3乙12.313.314.311.712.012.813.213.814.112.5(1)请画出茎叶图.如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论);(2)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.【解析】(1)甲、乙两人10次训练的成绩的茎叶图如图:从统计图中可以看出,乙的成绩较为集中,差异程度较小,乙成绩的稳定性更好,所以选派乙同学代表班级参加比赛更好.(2)设甲同学的成绩为x,乙同学的成绩为y,则|x-y|<0.8,得x-0.8<y<0.8+x,如图,阴影部分面积即为3×3-2.2×2.2=4.16,则P(|x-y|<0.8)=P(x-0.8<y<0.8+x)=eq\f(4.16,3×3)=eq\f(104,225).4.(2017·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得eq\o(x,\s\up6(-))=eq\f(1,16)eq\i\su(i=1,16,x)i=9.97,s=eq\r(\f(1,16)\i\su(i=1,16,)(xi-\o(x,\s\up6(-)))2)=eq\r(\f(1,16)(\i\su(i=1,16,x)eq\o\al(2,i)-16\o(x,\s\up6(-))2))≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.用样本平均数eq\o(x,\s\up6(-))作为μ的估计值eq\o(μ,\s\up6(^)),用样本标准差s作为σ的估计值eq\o(σ,\s\up6(^)),利用估计值判断是否需对当天的生产过程进行检查?剔除(eq\o(μ,\s\up6(^))-3eq\o(σ,\s\up6(^)),eq\o(μ,\s\up6(^))+3eq\o(σ,\s\up6(^)))之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,eq\r(0.008)≈0.09.【解析】(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望E(X)=16×0.0026=0.0416.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由eq\o(x,\s\up6(-))=9.97,s≈0.212,得μ的估计值为eq\o(μ,\s\up6(^))=9.97,σ的估计值为eq\o(σ,\s\up6(^))=0.212,由样本数据可以看出有一个零件的尺寸在(eq\o(μ,\s\up6(^))-3eq\o(σ,\s\up6(^)),eq\o(μ,\s\up6(^))+3eq\o(σ,\s\up6(^)))之外,因此需对当天的生产过程进行捡查.剔除(eq\o(μ,\s\up6(^))-3eq\o(σ,\s\up6(^)),eq\o(μ,\s\up6(^))+3eq\o(σ,\s\up6(^)))之外的数据9.22,剩下数据的平均数为eq\f(1,15)×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.eq\i\su(i=1,16,x)eq\o\al(2,i)=16×0.2122+16×9.972≈1591.134,剔除

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论