版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤2.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:13.如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.94.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.85.函数在同一直角坐标系内的图象大致是()A. B. C. D.6.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣27.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点DC.点M D.点N8.关于x的方程有实数根,则k的取值范围是()A. B.且 C. D.且9.将0.000102用科学记数法表示为()A. B. C. D.10.在Rt△ABC中,∠C=90°,若cosB=,则∠B的度数是()A.90° B.60° C.45° D.30°二、填空题(每小题3分,共24分)11.分式方程的解为______________.12.在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,……顺次这样做下去,第2020个等边三角形的边长为______.13.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=_____.14.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.15.如图,在中,、分别是、的中点,点在上,是的平分线,若,则的度数是________.16.如图,在△ABC中,D、E分别是边AB、AC上的两点,且DEBC,BD=AE,若AB=12cm,AC=24cm,则AE=_____.17.cos30°+sin45°+tan60°=_____.18.某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小明的身高为1.5米,则树高为_________米.三、解答题(共66分)19.(10分)某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元,求该企业从2015年到2017年利润的年平均增长率.20.(6分)在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即CD的长,小英测量的步骤及测量的数据如下:(1)在地面上选定点A,B,使点A,B,D在同一条直线上,测量出、两点间的距离为9米;(2)在教室窗户边框上的点C点处,分别测得点,的俯角∠ECA=35°,∠ECB=45°.请你根据以上数据计算出的长.(可能用到的参考数据:sin35°≈0.57cos35°≈0.82tan35°≈0.70)21.(6分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.22.(8分)如图,在△ABC中,AB=AC=10,∠B=30°,O是线段AB上的一个动点,以O为圆心,OB为半径作⊙O交BC于点D,过点D作直线AC的垂线,垂足为E.(1)求证:DE是⊙O的切线;(2)设OB=x,求∠ODE的内部与△ABC重合部分的面积y的最大值.23.(8分)如图,为外接圆的直径,点是线段延长线上一点,点在圆上且满足,连接,,,交于点.(1)求证:.(2)过点作,垂足为,,,求证:.24.(8分)(1)解方程:(2)如图已知⊙的直径,弦与弦平行,它们之间的距离为7,且,求弦的长.25.(10分)如图,AB是⊙O的直径,弦EF⊥AB于点C,点D是AB延长线上一点,∠A=30°,∠D=30°.(1)求证:FD是⊙O的切线;(2)取BE的中点M,连接MF,若⊙O的半径为2,求MF的长.26.(10分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.2、B【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.3、B【分析】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【详解】延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,∴AE=AB=3,BF=CF=BC=5,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDI,∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=()2=,∵AD=10,∴△AEI中AE边上的高=2,∴△AEI的面积=×3×2=3,∵△ABF的面积=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面积=×2×5=5,∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=15﹣3﹣5=1.故选:B.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.4、D【解析】试题解析:袋中球的总个数是:2÷=8(个).故选D.5、C【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选C.6、C【分析】抛物线y=1x1绕原点旋转180°,即抛物线上的点(x,y)变为(-x,-y),代入可得抛物线方程,然后根据左加右减的规律即可得出结论.【详解】解:∵把抛物线y=1x1绕原点旋转180°,∴新抛物线解析式为:y=﹣1x1,∵再向右平移1个单位,向下平移1个单位,∴平移后抛物线的解析式为y=﹣1(x﹣1)1﹣1.故选:C.【点睛】本题考查了抛物线的平移变换规律,旋转变换规律,掌握抛物线的平移和旋转变换规律是解题的关键.7、A【解析】试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故选A.考点:位似变换.8、C【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=1;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2-4ac≥1.【详解】当k=1时,方程为3x-1=1,有实数根,当k≠1时,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.综上可知,当k≥-时,方程有实数根;故选C.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.9、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000102=1.02×10−4,
故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、B【分析】根据锐角三角函数值,即可求出∠B.【详解】解:∵在Rt△ABC中,cosB=,∴∠B=60°故选:B.【点睛】此题考查的是根据锐角三角函数值求角的度数,掌握特殊角的锐角三角函数值是解决此题的关键.二、填空题(每小题3分,共24分)11、;【解析】方程两边都乘以(x+2)(x-2)得到x(x+2)-2=(x+2)(x-2),解得x=-1,然后进行检验确定分式方程的解.【详解】解:去分母得x(x+2)-2=(x+2)(x-2),
解得x=-1,
检验:当x=-1时,(x+2)(x-2)≠0,
所以原方程的解为x=-1.
故答案为x=-1.【点睛】本题考查解分式方程:先去分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解.12、【分析】由题意利用一次函数的性质以及等边三角形性质结合相似三角形的性质进行综合分析求解.【详解】解:将代入分别两个解析式可以求出AO=1,∵为边作第一个等边三角形,∴BO=1,过B作x轴的垂线交x轴于点D,由可得,即,∴,,即B的横轴坐标为,∵与轴平行,∴将代入分别两个解析式可以求出,∵,∴,即相邻两个三角形的相似比为2,∴第2020个等边三角形的边长为.故答案为:.【点睛】本题考查一次函数图形的性质以及等边三角形性质和相似三角形的性质的综合问题,熟练掌握相关知识并运用数形结合思维分析是解题的关键.13、4【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点睛】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.14、3﹣【分析】根据图形可以求得BF的长,然后根据图形即可求得S1﹣S2的值.【详解】解:∵在矩形ABCD中,AB=2,BC=,F是AB中点,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案为:3﹣.【点睛】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键.15、100°【分析】利用三角形中位线定理可证明DE//BC,再根据两直线平行,同位角相等可求得∠AED,再根据角平分线的定义可求得∠DEF,最后根据两直线平行,同旁内角互补可求得∠EFB的度数.【详解】解:∵在△ABC中,D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,
∴∠AED=∠C=80°,∠DEF+∠EFB=180°,
又ED是∠AEF的角平分线,
∴∠DEF=∠AED=80°,
∴∠EFB=180°-∠DEF=100°.
故答案为:100°.【点睛】本题考查三角形中位线定理,平行线的性质定理,角平分线的有关证明.能得出DE是ABC中位线,并根据三角形的中位线平行于第三边得出DE∥BC是解题关键.16、1cm【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案.【详解】解:∵DE//BC,∴,即,解得:AE=1.故答案为:1cm.【点睛】本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键.17、【分析】根据特殊角的三角函数值、二次根式的化简进行计算,在计算时,需要针对每个考点分别进行计算,然后求得计算结果.【详解】cos30°+sin45°+tan60°===故填:.【点睛】解决此类题目的关键是熟记特殊角的三角函数值.18、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,对应比值相等进而得出答案.【详解】解:根据相同时刻的物高与影长成比例.设树的高度为,则,解得:.故答案为:1.【点睛】此题考查相似三角形的应用,解题关键在于掌握其性质定义.三、解答题(共66分)19、该企业从2015年到2017年利润的年平均增长率为20%【解析】设该企业从2015年到2017年利润的年平均增长率为x,根据该企业2015年及2017年的年利润,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】设该企业从2015年到2017年利润的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=-2.2(舍去).答:该企业从2015年到2017年利润的年平均增长率为20%.【点睛】本题考查了一元二次方程的应用,根据题意找准等量关系,正确列出一元二次方程是解题的关键.20、CD的长为21米【解析】试题分析:首先分析图形:本题涉及到两个直角三角形△DBC、△ADC,设公共边CD=x,利用锐角三角函数表示出AD和DB的长,借助AB=AD-DB=9构造方程关系式,进而可求出答案解:由题意可知:CD⊥AD于D,∠ECB=∠CBD=,∠ECA=∠CAD=,AB=9.设,∵在中,∠CDB=90°,∠CBD=45°,∴CD=BD=.∵在中,∠CDA=90°,∠CAD=35°,∴,∴∵AB=9,AD=AB+BD,∴.解得答:CD的长为21米21、(1)图形见解析,点坐标;(2)作图见解析,,,的坐标分别是【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标;(2)由关于原点中心对称性画,可确定写出,,的坐标.【详解】解:(1),把向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系,C(3,-3);(2)分别找到的对称点,,,顺次连接,,,即为所求,如图所示,(-2,1),(-1,4),(-3,3).【点睛】本题考查了作图-旋转变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、(1)证明见解析;(2)【分析】(1)由等腰三角形的性质可得∠C=∠B,∠ODB=∠C,从而∠ODB=∠C,根据同位角相等两直线平行可证OD∥AC,进而可证明结论;(2)①当点E在CA的延长线上时,设DE与AB交于点F,围成的图形为△ODF;②当点E在线段AC上时,围成的图形为梯形AODE.根据三角形和梯形的面积公式列出函数关系式,利用二次函数的性质求解.【详解】证明:(1)连接OD,∵AB=AC,∴∠C=∠B.∵OB=OD,∴∠ODB=∠B∴∠ODB=∠C∴OD∥AC.∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.(2)①当点E在CA的延长线上时,设DE与AB交于点F,围成的图形为△ODF.∵OD=OB=x,∠B=30°,∴∠FOD=60°,∵∠ODE=90°,∴DF=x,∴S△ODF=x·x=,(0<x≤)当x=时,S△ODF最大,最大值为;②当点E在线段AC上时,围成的图形为梯形AODE.∵AB=AC=10,∠B=30°,∴BC=10,作OH⊥BC,∵OD=OB=x,∠B=30°,∴BD=2BH=x,∴CD=10-x,∵∠C=30°,∠DEC=90°,∴DE=(10-x),CE=(10-x)=15-x,∴AE=x-5,∴S梯形AODE=(x-5+x)·(10-x)=(-+12x-20)(<x<10)当x=6时,S梯形AODE最大,最大值为10;综上所述,当x=6时,重合部分的面积最大,最大值为10.点睛:本题考查了等腰三角形的性质,平行线的判定与性质,切线的判定,解直角三角形,三角形和梯形的面积公式,二次函数的性质,知识点比较多,难度比较大.熟练掌握切线的判定方法及二次函数的性质是解答本题的关键.23、(1)见解析;(2)见解析.【分析】(1)利用两边对应成比例,夹角相等,两三角形相似即可;(2)构造全等三角形,先找出OD与PA的关系,再用等积式找出PE与PA的关系,从而判断出OM=PE,得出△ODM≌△PDE即可.【详解】(1)证明:∵,∴,∵,∴.(2)证明:连接,∴,∵,∴,∵,∴,∴,为直径,∴,∴,∵,∴,设圆半径为,在中,∵,∴,,∵,∴,∴,又为中点,∴,,∵,∴,又,,∴,∴.【点睛】此题是圆的综合题,主要考查了相似三角形的判定和性质,圆的性质,全等三角形的判定和学生,解本题的关键是构造全等三角形,难点是找OM=PE.24、(1);(2)1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙教版五年级上册数学第一单元 小数的意义与加减法 测试卷及完整答案【各地真题】
- 2024年购销合同分期付款条款
- 诚信为魂不抄袭作业保证书
- 调峰天然气订购合同
- 货架订购销售协议
- 质量保证书撰写技巧指南汇编设计
- 购买招标文件情况单
- 车辆行驶期间车辆安全行驶保证书
- 软件优化合同模板
- 软件采购合同
- GB/T 44713-2024节地生态安葬服务指南
- 一年级家长会课件2024-2025学年
- 国开(浙江)2024年《个人理财》形考作业1-4答案
- 2024年教资考试时政高频考点141条
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 装修设计需求模版
- 欠薪清零台账
- 施工进度计划网络图(模板)
- 中国数字地震观测网络技术规程
- 型材切割机使用说明
- 交通事故法律知识100问
评论
0/150
提交评论